Why eating clams sometimes makes us sick (Part 1 of 2)

Image result for oysters
Is eating these a gamble? Science can help improve our odds!

I am often asked if I eat clams. The answer is yes: while I love to observe live clams and appreciate their abilities, I will eat a good clam chowder or plate of grilled scallops if presented with the chance. While I’m generally not a fan of super fishy-tasting foods, I eat bivalves with a clear conscience because farmed mollusks represent a super sustainable way to get protein! However, as many of us have learned the hard way, shellfish can sometimes produce unwanted results later after the meal, if the animals are contaminated with food poison. Eating such “bad” clams can produce a spectrum of food poisoning symptoms ranging from vomiting and diarrhea to memory loss to even paralysis and death.

Humans have known the hazards of eating shellfish for a very long time. It has been suggested that the ban on shellfish present in kosher and halal dietary rules arose as a preventative measure to protect from food poisoning (though eating fish, land animals and even vegetables can poison people in numerous ways as well). Studies of oysters have determined that ancient peoples of modern day Georgia from 5000 years before present selected their season of harvest based partially on knowledge of the seasons when such poisoning was most prevalent in their area.

How and why does this happen, and what can we do to prevent it? It’s a billion-dollar question, because when flare-ups of shellfish food poisoning happen, they are hugely costly to fishermen and the food industry, costing millions of dollars a year in lost business when fisheries are forced to shut down and products are recalled. Such events are increasing in frequency and severity. Which makes it all the more strange that these shellfish poisoning events are not the fault of the bivalves per se, but rather what they’re eating.

oyster.png
Note: people generally get annoyed when you start to point out the body parts of the oyster they’re about to swallow whole. Source

Almost all bivalves are filter-feeders, using their gills to gather small passing food particles, which they then either ingest or discard based on the quality of the food item. Clams are cows crossed with Brita filters, and for many species of clams which we eat, the reason they do all this filtration is to find phytoplankton food. Phytoplankton are microscopic algae suspended by ocean currents that make their living from photosynthesis. They are a hugely plentiful and high-quality food item, making up a huge amount of the biomass available in the ocean. Like plant-life on land, phytoplankton are highly seasonal in their appearance, rising and falling in abundance in periodic “bloom” events.

an image of red tide in Florida
Aerial view of a red tide off the Texas coast. Source: NOAA

But as Spongebob Squarepants taught us, plankton are not always peaceful. Many types of algae produce toxic compounds which may be integrated into the body parts of bivalves that eat them. Scientists call the blooms of algae which produce toxins “Harmful Algal Blooms” (HABs), and such events are growing in frequency and cause huge harm to marine life and sicken thousands of people per year. There are many algae species which cause HABs all around the world, sometimes visible as “red tides,” but not always. When HABs occur, they can lead to mass deaths of higher animals in the food chain that feed on clams such as marine mammals and seabirds. In fact, HABs are at their most dangerous to humans when they catch us by surprise.

source.gif
Who me? I’d never!
https://cdn.coastalscience.noaa.gov/csmedia/2014/02/K-mikimotoi.jpg
Microscope view of the toxic dinoflagellate Karenia. Source: NOAA

When humans eat bivalves which have been dosed with such marine toxins, many types of poisoning can occur. Brevetoxin is produced by a type of dinoflagellate phytoplankton Karenia as well as other species, and when humans are exposed, we can suffer from Neurotoxic Shellfish Poisoning, which causes vomiting, diarrhea and even neurological effects like slurred speech. Saxitoxin is produced by a variety of plankton species including dinoflagellates and freshwater cyanobacteria. When ingested in clams (such as the butter clam Saxidomus which gave it its name), fish or other animals, it can cause Paralytic Shellfish Poisoning, a sometimes fatal syndrome which shuts down nerve signaling, leading to temporary paralysis.

So we know it’s bad for humans to ingest these toxins. What is it doing to the clams? Oddly enough, some types of toxins like saxitoxin are not that harmful to the clams or other plankton eating animals, allowing them to accumulate huge amounts in their bodies with little ill effect. Its presence does not seem to influence their feeding behavior much, or their growth after exposure. Its status as a neurotoxin in mammals might be a total chemical and evolutionary coincidence, as researchers suggest that it may actually serve as a signal in some part of the algae’s mating cycle. This also may be the case for brevetoxin, which appears to be produced when Karenia is under environmental stress. But there is not much agreement in the HAB and aquaculture research fields, because there are many types of algae, which may produce their toxins for many reasons, and it is very hard for us to zoom in to the scale of the microbe and out to the scale of the ecosystem at the same time, to find any kind of universal evolutionary role of these toxins. Some researchers insist that some bivalves are influenced negatively by brevetoxin, but only at the juvenile stage during major bloom events. The effects of the toxin may only influence certain species, or only become significant if the toxin reaches the digestive tract of the bivalve. Overall, research into impact of HABs on clams is still a topic of active research, and the idea that the microbes produce these toxins to defend against bivalve predators is definitely not a slam-dunk, easily proven hypothesis. While some clams are negatively affected by the toxins, it is not consistently observed across species in a open-and-shut way, and it can be a subtle effect to observe and quantify scientifically.

giphy
Karenia to mammals: Oops!

The more I read about this stuff, the more shocked I am at the incredible complexity of marine algae and their toxins. I only started reading about them trying how to to understand how they influence bivalves. I was hoping to find some evidence of their effects on bivalve growth that I could apply back in time in fossil shells to understand the historical occurrence of HAB events. It’s important to understand HABs because they hurt people, cost our society a lot of money and if we understand how to avoid them, we can help minimize such impacts in the future as HABs continue to become more common. In my next post, I’ll talk about some of the ways that researchers have come up with to measure and monitor HABs, so that we can eat clams as safely as possible.

Oh, the seasons they grow! [research blog]

My latest clamuscript is published in Palaios, coauthored with my advisor Matthew Clapham! It’s the first chapter of my PhD thesis, and it’s titled “Identifying the Ticks of Bivalve Shell Clocks: Seasonal Growth in Relation to Temperature and Food Supply.” I thought I’d write a quick post describing why I tackled this project, what I did, what I found out, and what I think it means! Raw unformatted PDF of it here on my publication page.

Why I did this project:

I study the growth bands of bivalve (“clam”) shells. Bivalves create light and dark shell growth bands as they grow their shells, much like the rings of a tree. The light bands form during happy times for the clam, when it is growing quickly and putting down lots of carbonate. The dark bands appear during times of cessation, when the bivalve ceases growth during a hibernation-like period. This can happen in the cold months, or the hot months, or both, or neither, depending on the clam and where it lives. It turns out that there are a lot of potential explanations for why these annual cessations of growth happen. Different researchers have suggested through the years that temperature (high or low) is the biggest control on the seasons that bivalves grow, but others have suggested that food supply is more important. Others say it’s mostly a function of the season they reproduce, when they’re putting most of their energy into making sperm/eggs and not growing their bodies. I wanted to try to see if I could find trends across all of bivalves which would shed light on which factors are important in determining their season of growth.

Capture.PNG
Annual growth lines in the shell of a giant clam. The transparent spots are the times that it was growing more slowly and not happy. Was this because of temperatures? Or was it getting less to eat? I wanted to know.

What I did:

I read a ton of papers in the historical literature about bivalves. These were written by people in many fields: aquaculture, marine ecology, paleoclimate researchers (using the clams shells as a chemical record of temperature), and more. All of the papers were united by describing the seasons that the bivalves grew, and the seasons that they stopped growing. I ended up with nearly 300 observations of marine (saltwater) bivalve growth for dozens of species from all around the world. I had papers as old as the earliest 1910s, and some as new as last year.

map.PNG
A map of all the places the observation of bivalve growth came from. Blue means they shut down in the winter, while red means they do not.

We have mussels, oysters, scallops, clams, cockles, geoducks, giant clams, razor clams, quahogs, and more in the database. Bivalves that burrow. Bivalves that sit on the surface of the sediment. Bivalves that stick onto rocks. Bivalves that can swim. With each, I noted data that the researchers recorded. If they grew during a season, I coded it as a 1. If they didn’t, I coded it as a 0. So a bivalve growing in summer but not winter would be recorded as 1,0. I also recorded environmental data including temperature of the location in winter and summer in the location, as well as seasonal supply of chlorophyll (a measure of phytoplankton, which is the main source of food for most clams). It turned out that not enough of the studies recorded temperature or chlorophyll for their sites, so I wanted to back these up with an additional data source. I downloaded satellite-based temperature and chlorophyll data for each location, as well as additional studies which directly measured chlorophyll at each site. I wanted lots of redundant environmental data to ensure that any trend or lack of trend I observed in my analysis was not due to a weakness of the data.

I then compared the occurrence of shutdown by season with these environmental variables using a statistical technique called regression. Regression basically involves trying to relate a predictor variable (in this case, latitude, temperature and chlorophyll during a certain season) to the response variable (did the clam grow in that season or not?). We wanted to see which environmental variable relates most closely to whether or not the clam grows or not. Because our dependent variable was binary (0 or 1), we used a technique called logistic regression, which tries to model the “log odds” of an event occurring in response to the predictor variable. That log odds can then be back-calculated to probability of the event occurring.

What we found:

shutdowns.PNG

In a clamshell, we found that latitude (distance from the equator) is a very good predictor of whether or not a bivalve shuts down for the winter. As you’d expect, bivalves in the far north and far south of our planet are more likely to take a winter nap. However, bivalves at the equator mostly grow year round and are not likely to take a summer nap. In relation to temperature, the lower the winter temperature, the more likely the bivalve is to stop shell growth. High summer temperature is not as good a predictor for the occurrence of a summer shutdown, but the majority of summer shutdowns seem to occur at the low temperate latitudes, where the difference between the annual range of temperature is largest. Unlike at the equator, where bivalves likely can adapt to the hottest temperatures and be happy clams, they have to adapt to a huge range of temperatures in places like the American Gulf and Atlantic coasts, the Adriatic and Gulf of California. And if they are restricted at the northward end of their range, they may have no choice but to shut down in summer as there is nowhere cooler to migrate to.

Picture1
GIF of the satellite data showing white as hotspots of phytoplankton ability. Notice that the food is more available in summer months for each hemisphere. We were trying to see if this relates back to when the bivalves grow in every place we had data for.

Food supply, on the other hand, is not a good predictor of when bivalves shut down. When we went into this project, we expected food to be a powerful control on seasonal growth because it is intuitive and well understood that the better fed a bivalve is, the larger it will grow overall. But the seasonal low amount of chlorophyll (and therefore the amount of photosynthesizing plankton) in the bivalves’ areas had no relationship to whether or not the bivalve shut down in a certain season. To double check that this wasn’t a weakness in my satellite data, I downloaded additional direct observations from the same places as many bivalve studies in the dataset, but I still couldn’t find the relationship. We propose that the seasonal supply of phytoplankton is not well related to seasonal growth of bivalves because: 1) phytoplankton supply isn’t very seasonal in nature in most of the sites we studied. There are peaks in multiple seasons rather than a clean up and down wave shape like temperature. 2) Bivalves are pretty flexible in what they eat. They also eat other types of plankton and suspended particles that are even less seasonal. It may be pretty difficult to find bivalves that are seasonally starving. One of the most probable places to find such starvation shutdowns might be the poles, where seasonal ranges of temperature are quite small but plankton does really have a seasonal pattern of availability. More research will be needed to describe the nature of polar bivalves and why they shut down growth.

What’s next?
This is the first chapter of my PhD. I have two more chapters I’m working on, both related to the geochemistry of bivalve shells. I am writing those manuscripts this summer and looking for postdoctoral fellowships in the fall related to geochemistry of marine organisms in the fossil record. I hope to pursue more projects looking at the season of growth in bivalves, switching to understanding the role that changing seasonal cycles in their environment and biology play in their evolution. Do bivalves that live closer together tend to reproduce at different times? Can we track season of reproduction in relation to temperature and food supply? There are a lot more clam stories to be told and I look forward to sharing them all with you. Until the next research blog,

Dan