Weird Clam Profile: Hammer Oysters

Malleus malleus from Indonesia. Source: Wikipedia

Oyster. Reading that word, you probably formed an image in your mind of a rough-shelled creature with a shiny mother-of-pearl (nacreous) inside that someone pulled out of some silt in an estuary. And yes, that’s what most oysters look like. Some oysters are of additional economic value through their creation of pearls. These pearl oysters have long, straight hinge lines and live in the tropics in and around coral reefs.

A pearl oyster. See the straight hinge? Source: Pearl Paradise on Flickr

The hammer oysters are another sort of oyster, not of the Ostreidae family that includes most of the bivalves we think of as oysters, but still closely related and in its own family, the Malleidae. Malleus is the latin word for hammer, and the most distinctive genus of hammer oysters indeed look just like a hammer sitting on the seafloor.

In a typical life position in a seagrass bed. Notice all the algae, anemones and other encrusting creatures freeloading off the hammer oyster’s hard work. Source: Ria Tan on EOL

What the…that thing’s alive? How does that even work? This is an oyster? That’s how I imagine the first scientist to discover the hammer oyster reacting. Because they are weird and rather incomprehensible-looking. But when you know the way they live, it makes more sense.

There is a small area of nacre (mother of pearl) in the area near the rear of the interior. Source: Archerd Shell Collection

The hammerhead part of the oyster is just a super elongated hinge. The creature has a long, straight hinge like other oysters, but it has evolved to instead have a relatively narrow set of valves attached to that ridiculously overbuilt hinge. Like other oysters, they secrete byssal threads from their backside to attach themselves to the bottom. The narrow valves commonly poke up out of sandy bottoms in tropical waters nearby coral reefs. They do particularly well in seagrass beds, and often live in large colonies similar to other oysters.

Shell collectors seek out hammer oyster shells which have other bivalves attached. Here is a thorny oyster living on top of Malleus. Two for one! Source

The absurd hinge helps these creatures to stay anchored into the sediment, but also serves as “wings” that help it avoid sinking into the sediment over time. One thing us humans don’t realize sitting on sand is that it actually acts like a liquid. Over time, if we sat on wet sand, we would likely begin to sink in unless we spread out our arms and legs to increase our surface area. In the ocean, all sand is quicksand. Different organisms have different strategies to avoid being engulfed by the sediment they live on, and the hammer oyster has had good success with its strategy. It doesn’t care that you think it looks weird. It just sits there, filtering water for passing food particles and plankton. It’s very good at it, has been perfecting the strategy for over 250 million years, and doesn’t need your smartass remarks, thank you very much.

Another shot of a happy hammer oyster doing what it does best, in a seagrass bed near Singapore. Source: Wild Singapore on iNaturalist

The boring giant clam is anything but.

Tridacna crocea, bored into a coral head on a reef in Palau

There are many types of giant clam. Not all of them are giant; the boring giant clam, Tridacna crocea, only grows to 10 cm long or so. The boring giant clam is not so named because it’s dull; its main skill is its ability to bore into the coral of its coral reef home and live with its entire shell and body embedded in the living coral. They sit there with their colorful mantle edge exposed from a thin opening in the coral, harvesting energy from sunlight like the other giant clams. When disturbed by the shadow of a human or other such predator, they retract their mantle and close their shell, encased by an additional wall of coral skeleton. It’s a clever defensive strategy, and they are some of the most numerous giant clams in many reefs in the Eastern and Southern Equatorial Pacific.

But it’s always been a mystery of how they bore away at the coral so efficiently, and how they continue to enlarge their home as they grow their shell. There are other bivalves that are efficient borers, including the pholad clams (“piddocks”) which use sharp teeth on their hinge to carve their way into solid rock, and the shipworms, which have abandoned their protective shell and instead use their two valves as teeth to burrow into wood. Both of these methods of boring are pretty straightforward.


Piddocks in next to holes that they made in solid rock. Source: Aphotomarine


Shipworm embedded in wood. Source: Michigan Science Art via Animal Diversity Web

But the boring giant clam has no such adaptation. It does not have large teeth on its hinge to carve at the coral. Such abrasion of the coral would also not explain how they widen the opening of their cubby-holes to allow their shell to grow wider. This mystery has long confounded giant clam researchers. I myself have wondered about it, and was surprised to find there was no good answer in the literature about it. But now, a team of scientists may have cracked the problem once and for all.

At the back of T. crocea‘s shell at the hinge, there is a large “byssal opening” with a fleshy foot which they can extend out of the opening to attach themselves to surfaces. Giant clams that don’t embed in coral (“epifaunal,” resting on the surface of the coral rather than “infaunal,” buried in the coral) lack this opening. The researchers suspected that the foot was the drilling instrument the clam used to create its home.


Byssal opening of T. crocea with the foot retracted. Source: NickB on Southwest Florida Marine Aquarium Society

How could a soft fleshy foot drill into the solid calcium carbonate (CaCO3) skeleton of corals? I can confirm from experience that my own foot makes for a very ineffective drilling instrument in such a setting. But T. crocea has a secret weapon: the power of acid-base chemistry. CaCO3 can be dissolved by acids. You may well have taken advantage of this chemistry to settle your acid stomach by taking a Tums, which is made of CaCO3 and reacts with the excessive hydrochloric acid in your stomach, leaving your tummy with a more neutral pH. pH is a scale used to measure acidity, with low numbers indicating very acidic solutions like lemon juice, and high pH indicating a basic solution like bleach.

Scientists are well aware of the hazards corals face from decreasing pH (increasing acidity) in the oceans. All the CO2 we are emitting, in addition to being a greenhouse gas, dissolves in the ocean as carbonic acid and gets to work reacting and dissolving away the skeletons of corals and any other “calcifying” organisms that make shells. It makes it harder for corals to form their skeletons and is already worsening die-offs of corals in some areas. The researchers suspected that the clams use this phenomena to their advantage at a small scale, lowering the pH with their foot somehow to dissolve away the coral to make their borehole.

Using a wedge to keep open a Tridacna shell in my Red Sea work. We took a small blood sample with permission of local authorities. This caused no lasting effects to the clams.

But they needed to prove it, and that was a challenge. Giant clams can be unwilling research participants. I myself have observed this in trying to take samples of their body fluid for my own research. When they sense the presence of a predator, they immediately clam up in their protective shell. I used a small wedge to keep their shells open to allow me to take a sample of their body fluid, but the researchers working on T. crocea needed to convince the clam to place its foot on a piece of pH-sensitive foil, keep it there and do whatever acid-secreting magic allows it to burrow into coral. They would then be able to measure whether it indeed is making the water around its foot more acidic, and by how much.

Diagram from Hill et al., 2018 showing their experimental design.

In what I can only assume was an extended process of trial and error and negotiation with a somewhat unwilling research subject, the researchers found exactly the right angle needed to convince the clam that it was safe enough to try making a coral home. But it was not in coral, instead sitting in an aquarium, on top of a special type of foil that changes color when exposed to changing pH, like a piece of high-tech litmus paper. The researchers discovered that their suspicions were correct: the clams do make the area around their feet significantly more acidic than the surrounding seawater, as much as two to four pH units lower. Where seawater is around a pH of around 8, the clams were regularly reducing pH to as low as 6 (about the level of milk) and sometimes as low as 4.6 (about the pH of acid rain). Small differences in pH can make a big difference in the power of an acid because each pH unit corresponds to 10x more protons (hydrogen ions, H+) in the water. The protons are the agent that dissolves CaCO3. Each proton can take out one molecule of coral skeleton. The clams are dissolving away coral skeleton to make holes with only their feet!

Footage of the pH- sensitive foil, with darker areas corresponding to lower pH. The areas of low pH (high acidity) correspond exactly to the “footprint” of the clam!

But what in T. crocea‘s foot allows them to make acid? I know that my foot does not do this, though that would be a very entertaining and obscure superpower. The researchers found the enzymes called vacuolar-type H+-ATPase (VHA) present in great quantities in the outermost cells of the clam’s feet. These enzymes are found throughout the tree of life and are proton pumps that can quickly reduce pH through active effort. Other prior researchers like the influential Sir Maurice Yonge, a legendary British marine biologist who worked extensively with giant clams, had suspected that the clams had used acid but had never been able to detect a change in pH in the seawater around the clams’ feet through more conventional methods. It was only because of new technologies like the pH paper that this research team was able to finally solve this issue. And now, I suspect other groups will want to re-investigate the importance of VHA in their study organisms. Many branches of the tree of life may be utilizing acid-base chemistry to their advantage in ways we never had previously imagined.

Weird Clam Profile: The Heart Cockles

Corculum cardissa (from Wikipedia)

The heart cockle (Corculum cardissa) is so named because of its heart shaped shell. It is native to warm equatorial waters of the Indo-Pacific. While many bivalves sit with the their ventral valve facing down, the heart cockle sits on its side, with one side of both valves facing downward. The valves have adapted to resemble wings and are flat on the bottom, providing surface area that allows the bivalve to “raft” on the surface of soft sandy sediment and not sink. They may also sit embedded in little heart-shaped holes on the tops of corals.

Two heart cockles embedded in the top of a Porites coral. Source: Reefbuilders
A particularly green heart cockle from Singapore. Source: orientexpress on iNaturalist

Heart cockles are a member of a small club of bivalves which partner with symbiotic algae for nutrition created by photosynthesis. Most of the modern photosymbiotic bivalves are in the family Cardiidae, the cockles. The giant clams (Tridacninae) are also in this family and have a similar partnership with the same genus of Symbiodinium algae. This algae is also found in many species of coral.

The dark circles in these microscope images are Symbiodinium. The top is a view of giant clam body tissue. The cells are present throughout the tissue in giant clams. The bottom shows heart cockle “tubules” which contain their symbiotic algae. The algae are restricted to narrow tubes that run through the tissue of the cockle. Source: Farmer et al. 2001

So when you find a live heart cockle, it is often green in color, because of the presence of this algae near the surface of its tissue. Its shell has adapted to be “windowed” (semi-transparent) to allow in light for the algae to harness to make sugars. The algae are housed in networks of tubes within the soft tissue of the cockle. They trade sugars with their host in exchange for nitrogen and carbon from the clam.

As I’ve mentioned before regarding the giant clams, this is a very productive partnership and has evolved separately several times in the history of bivalves. However, we don’t know why almost all examples of modern bivalve photosymbiosis occur in the cockles. Why aren’t the heart cockles giant like the giant clams? What features are necessary to allow this symbiosis to develop? These are the kind of questions I hope to help answer in my next few years of work.

Oh, the seasons they grow! [research blog]

My latest clamuscript is published in Palaios, coauthored with my advisor Matthew Clapham! It’s the first chapter of my PhD thesis, and it’s titled “Identifying the Ticks of Bivalve Shell Clocks: Seasonal Growth in Relation to Temperature and Food Supply.” I thought I’d write a quick post describing why I tackled this project, what I did, what I found out, and what I think it means! Raw unformatted PDF of it here on my publication page.

Why I did this project:

I study the growth bands of bivalve (“clam”) shells. Bivalves create light and dark shell growth bands as they grow their shells, much like the rings of a tree. The light bands form during happy times for the clam, when it is growing quickly and putting down lots of carbonate. The dark bands appear during times of cessation, when the bivalve ceases growth during a hibernation-like period. This can happen in the cold months, or the hot months, or both, or neither, depending on the clam and where it lives. It turns out that there are a lot of potential explanations for why these annual cessations of growth happen. Different researchers have suggested through the years that temperature (high or low) is the biggest control on the seasons that bivalves grow, but others have suggested that food supply is more important. Others say it’s mostly a function of the season they reproduce, when they’re putting most of their energy into making sperm/eggs and not growing their bodies. I wanted to try to see if I could find trends across all of bivalves which would shed light on which factors are important in determining their season of growth.

Annual growth lines in the shell of a giant clam. The transparent spots are the times that it was growing more slowly and not happy. Was this because of temperatures? Or was it getting less to eat? I wanted to know.

What I did:

I read a ton of papers in the historical literature about bivalves. These were written by people in many fields: aquaculture, marine ecology, paleoclimate researchers (using the clams shells as a chemical record of temperature), and more. All of the papers were united by describing the seasons that the bivalves grew, and the seasons that they stopped growing. I ended up with nearly 300 observations of marine (saltwater) bivalve growth for dozens of species from all around the world. I had papers as old as the earliest 1910s, and some as new as last year.

A map of all the places the observation of bivalve growth came from. Blue means they shut down in the winter, while red means they do not.

We have mussels, oysters, scallops, clams, cockles, geoducks, giant clams, razor clams, quahogs, and more in the database. Bivalves that burrow. Bivalves that sit on the surface of the sediment. Bivalves that stick onto rocks. Bivalves that can swim. With each, I noted data that the researchers recorded. If they grew during a season, I coded it as a 1. If they didn’t, I coded it as a 0. So a bivalve growing in summer but not winter would be recorded as 1,0. I also recorded environmental data including temperature of the location in winter and summer in the location, as well as seasonal supply of chlorophyll (a measure of phytoplankton, which is the main source of food for most clams). It turned out that not enough of the studies recorded temperature or chlorophyll for their sites, so I wanted to back these up with an additional data source. I downloaded satellite-based temperature and chlorophyll data for each location, as well as additional studies which directly measured chlorophyll at each site. I wanted lots of redundant environmental data to ensure that any trend or lack of trend I observed in my analysis was not due to a weakness of the data.

I then compared the occurrence of shutdown by season with these environmental variables using a statistical technique called regression. Regression basically involves trying to relate a predictor variable (in this case, latitude, temperature and chlorophyll during a certain season) to the response variable (did the clam grow in that season or not?). We wanted to see which environmental variable relates most closely to whether or not the clam grows or not. Because our dependent variable was binary (0 or 1), we used a technique called logistic regression, which tries to model the “log odds” of an event occurring in response to the predictor variable. That log odds can then be back-calculated to probability of the event occurring.

What we found:


In a clamshell, we found that latitude (distance from the equator) is a very good predictor of whether or not a bivalve shuts down for the winter. As you’d expect, bivalves in the far north and far south of our planet are more likely to take a winter nap. However, bivalves at the equator mostly grow year round and are not likely to take a summer nap. In relation to temperature, the lower the winter temperature, the more likely the bivalve is to stop shell growth. High summer temperature is not as good a predictor for the occurrence of a summer shutdown, but the majority of summer shutdowns seem to occur at the low temperate latitudes, where the difference between the annual range of temperature is largest. Unlike at the equator, where bivalves likely can adapt to the hottest temperatures and be happy clams, they have to adapt to a huge range of temperatures in places like the American Gulf and Atlantic coasts, the Adriatic and Gulf of California. And if they are restricted at the northward end of their range, they may have no choice but to shut down in summer as there is nowhere cooler to migrate to.

GIF of the satellite data showing white as hotspots of phytoplankton ability. Notice that the food is more available in summer months for each hemisphere. We were trying to see if this relates back to when the bivalves grow in every place we had data for.

Food supply, on the other hand, is not a good predictor of when bivalves shut down. When we went into this project, we expected food to be a powerful control on seasonal growth because it is intuitive and well understood that the better fed a bivalve is, the larger it will grow overall. But the seasonal low amount of chlorophyll (and therefore the amount of photosynthesizing plankton) in the bivalves’ areas had no relationship to whether or not the bivalve shut down in a certain season. To double check that this wasn’t a weakness in my satellite data, I downloaded additional direct observations from the same places as many bivalve studies in the dataset, but I still couldn’t find the relationship. We propose that the seasonal supply of phytoplankton is not well related to seasonal growth of bivalves because: 1) phytoplankton supply isn’t very seasonal in nature in most of the sites we studied. There are peaks in multiple seasons rather than a clean up and down wave shape like temperature. 2) Bivalves are pretty flexible in what they eat. They also eat other types of plankton and suspended particles that are even less seasonal. It may be pretty difficult to find bivalves that are seasonally starving. One of the most probable places to find such starvation shutdowns might be the poles, where seasonal ranges of temperature are quite small but plankton does really have a seasonal pattern of availability. More research will be needed to describe the nature of polar bivalves and why they shut down growth.

What’s next?
This is the first chapter of my PhD. I have two more chapters I’m working on, both related to the geochemistry of bivalve shells. I am writing those manuscripts this summer and looking for postdoctoral fellowships in the fall related to geochemistry of marine organisms in the fossil record. I hope to pursue more projects looking at the season of growth in bivalves, switching to understanding the role that changing seasonal cycles in their environment and biology play in their evolution. Do bivalves that live closer together tend to reproduce at different times? Can we track season of reproduction in relation to temperature and food supply? There are a lot more clam stories to be told and I look forward to sharing them all with you. Until the next research blog,



When a clam gets an offer it can’t refuse

Tridacna maxima in Eilat, Israel

I study the giant clams, bivalves which can grow over three feet long and and are willingly “infected” by a symbiotic algae which they house in an altered stomach cavity. They provide their algae partners with nitrogen, a stable environment and even funnel light in their direction, and the algae happily share the fruit of their labor in the form of sugars. Imagine yourself swallowing algae, storing it in your gut and developing windows in your flesh to let light into your stomach. You’d never have to eat again. This is the growth hack that enables the giant clams to grow to unusual sizes. But it turns out that this lovely, beautiful partnership may not have started so peacefully. The algae may have made an offer the clam couldn’t refuse.

Top left: normal mussel. Top right: heavily infected L-shaped shell opening. Bottom: view of an algae-infected mussel, including close up of pearls. From Zuykov et al. 2018

A team from University of Quebec recently discussed what such a fresh infection looks like in mussels and it ain’t pretty. The mussels basically have their shells and bodies overgrown by parasitic Coccomyxa algae, leaving its flesh bright green and transforming its shell from the classic elongated, acute angled margin typical of Mytilus mussels into a strange L-shaped overhang. The more algae are present in the mussel, the more extreme this deformity becomes. The researchers propose that this is no accident, but that as they move in, the algae also manipulates the biochemical pathway that the mussel uses to create its shell.

Mussels, like all bivalves, create their shells by laying down calcium carbonate in layers at the outer edge of the shell. The calcium is sourced from salts in the water column and the carbon primarily comes from carbonate ions also available in the water. This reaction is easier when the pH of the clam’s internal fluid is higher (less acidic), and that is exactly what the algae may assist with. Algae like all plants take in carbon dioxide to use in photosynthesis, and in doing so they increase the pH of the mussel’s body fluid,

The authors note that the region of shell which experiences abnormal thickening in the infected mussels is also the most exposed to light. The Coccomyxa algae may be causing runaway calcification of shell in the regions that they infect, and even may be directly assisting with the calcification in an additional way through the action of an enzyme called carbonic anhydrase, which is used in both their photosynthesis and in shell production (I won’t get into the nitty gritty of that reaction here). But the calcification of the mussels does appear to be in overdrive, as infected mussels were also observed to make pearls!

The algae’s photosynthesis may be assisting the mussel’s shell formation, though overall these are still quite unhealthy organisms of lower weight than their uninfected brethren. Still, Coccomyxa is known to form symbioses with lichens and mosses, so it could be that with enough generations of collaboration and a bit of evolution, the harmful algal infection could become a much more mutually beneficial partnership. It’s not so far fetched to imagine that an ancestor of today’s giant clams got a bad case of gastritis and decided to make the best of a bad situation. Making a deal with their invaders, they became greater than the sum of their parts and evolved to be the giant hyper-calcifiers we know today.

Revenge of the Clams

Lampsilis showing off its convincing fish-like lure. Photo: Chris Barnhart, Missouri State.

Clams are traditionally the victims of the aquatic realm. With some exceptions, clams are generally not predatory in nature, preferring to passively filter feed. When they are attacked, their defenses center around their protective shell, or swimming away, or just living in a place that is difficult for predators to reach. They are picked at by crabs, crushed in the jaws of fish, and pried apart by sea stars. But some clams are sick of being the victims. They have big dreams and places to be. For these clams, the rest of the tree of life is a ticket to bigger and better things. These clams have evolved to live inside of other living things.

Pocketbook mussels, for example, have a unique problem. They like to live inland along streams but their microscopic larvae would not be able to swim against the current to get upstream. The mussels have adapted a clever and evil strategy to solve this problem: they hitch a ride in the gills of fish. The mother mussel develops a lure that resembles a small fish, complete with a little fake eyespot, and invitingly wiggles it to attract the attention of a passing fish. When the foolish fish falls for the trick and bites the mussel’s lure, it explodes into a cloud of larvae which then flap up to attach to the gill tissue of the fish like little binder clips. They then encyst themselves in that tissue and feed on the fish’s blood, all the while hopefully hitching a ride further upstream, where they release and settle down to a more traditional clammy life of filter-feeding stuck in the sediment.

Very tiny Mytilus edulis living in the gills of a crab (Poulter et al, 2017)
The tiny 2.5 mm long Mimichlamys varia, living on the leg of a crab (Albano and Favero, 2011)



Clams live in the gills of all sorts of organisms. Because they broadcast spawn, any passing animal may breathe in clam larvae which find the gills a perfectly hospitable place to settle. Sure, it’s a bit cramped, but it’s safe, well oxygenated by definition and there is plenty of food available. They also may just settle on the bodies of other organisms. Most of these gill-dwelling clams are commensal: that means that their impact on the host organism is fairly neutral. They may cause some localized necrosis in the spot they’re living, but they’re mostly sucking up food particles which the host doesn’t really care about. In addition, in crabs and other arthropods, these clams will get shed off periodically when the crab molts away its exoskeleton, so they don’t build up too heavily.

Top: Kurtiella attached among the eggs of the mole crab. Bottom: aberrant Kurtiella living within the tissue of the crab (Bhaduri et al, 2018)

While being a parasite is often denigrated as taking the easy way out, it is actually quite challenging to pursue this unusual lifestyle. Parasitism has evolved a couple hundred times in 15 different phyla, but it is rare to find some organism midway in the process of becoming a true parasite. One team of researchers just published their observations of a commensal clam, Kurtiella pedroana, which may be flirting with true parasitism. These tiny clams normally live in the gill chambers of sand crabs on the Pacific coasts of the Americas. They attach their anchoring byssal threads to the insides of the chambers and live a comfortable life until the crabs molt, when they are shed away. The crabs mostly are unaffected by their presence, but the researchers noticed that some of the clams had actually burrowed into the gill tissue itself. This is an interesting development, because the clams would not be able to filter feed in such a location, so they must have been feeding on the crab’s hemocoel (internal blood). These unusual parasitic individuals are currently a “dead end” as they haven’t figured out how to get back out to reproduce, but if they ever do, they could potentially pass on this trait and become a new type of parasitic clam species. The researchers have potentially observed a rare example of an animal turning to the dark parasitic side of life, with some living in a neutral commensal way and other innovative individuals seeking a bit more out of their non-consensual relationship with their host crabs.  Considering the irritation that other bivalves suffer at the claws of pesky parasitic crabs, this seems a particularly sweet revenge.





Hard shells aren’t actually that hard to make (yet)

One of the Antarctic bivalve species featured in this study. Source

Like all organisms, bivalves have a limited budget governing all aspects of their metabolism. If they put more energy into feeding (filtering the water), they can bring in a bit more food and therefore fuel more growth, but sucking in water takes energy as well, particularly if there isn’t enough food to be filtered out. Bivalves also periodically have to grow gonadal material and eggs for reproduction, expand their body tissue (somatic growth) and of course, grow their shells (made of of a mineral called carbonate). All of these expenditures are items in a budget determined by the amount of energy the bivalve can bring in, as well as how efficiently they can digest and metabolize that energy.

If a bivalve is placed under stress, their scope for growth (the max amount of size increase per unit time) will be decreased. Because they’re cold-blooded, bivalves are limited by the temperature of their environment. If temperatures are low, they simply can’t sustain the chemical reactions required for life at the same rate that endotherms like us can. They also may have to shut their shells and stop feeding if they’re exposed by the tide, or are tossed around by a violent storm, or attacked by predators or toxins from the algae that they feed on.

When their budget is lower, they have to make painful cuts, much like a company lays off employees if their revenues are lower. The question is which biological processes get cut, and when? My first chapter (submitted and in review) has settled temperature being the primary control on seasonal shell growth. Bivalves at high latitudes undergo annual winter shutdowns in growth, which create the growth bands I use to figure out their age, growth rate, etc. We’d be a lot closer to accurately predicting when bivalves suffer from “growth shutdowns” if we had hard numbers on how much energy they actually invest in their shells. A new study from a team led by Sue-Ann Watson of James Cook University attempts to do just that.

Diagram relating the growth bands of Antarctic soft-shelled clam with a chart showing the widths of those bands. Source

Collecting a database of widths for the annual growth rings of bivalve and gastropod (snail) species from many latitudes, Watson and her team were able to get a global view of how fast different molluscs grow from the equator to the poles. Because the unit cost of creating carbonate is determined by well-understood chemistry, they were able to create an equation which would determine the exact number of Joules of energy used for every bivalve to grow their shells.

They still needed a total energy budget for each species, in order to the percent of the energy budget that each bivalve was investing in their shells. They drew on a previous paper which had calculated the standard metabolic rates for each species by carefully measuring their oxygen consumption. We could do the same for you if you sat in a sealed box for an extended period of time while we measured the exact amount of oxygen going in and CO2 going out. Dividing the amount of energy needed to grow the shell by the total amount of energy used in the organism’s metabolism would give us a percent of total energy that the bivalve dedicates to adding growth layers to its shell.

That number is…not very large. None of the bivalves or gastropods they looked at put more than 10% of their energy into shell growth, and bivalves were the lowest, with less than 4% of their energy going into their shell. Low-latitude (more equatorward) bivalves have the easiest time, putting less than 1% of their energy into growth but getting way more payoff for that small expenditure. High-latitude polar bivalves have to work harder, because the lower temperatures they experience mean the reactions needed to create their shells are more expensive. In addition, most of that energy is going into the protein-based “scaffolding” that is used to make the shell, rather than the crystals of carbonate themselves. Organisms right now don’t have to put a whole lot of effort into making their protective shells, which could explain why so many organisms use shells for protection. That is good, because if shells were  already breaking the bank when it came to the bivalves’ growth budget, they wouldn’t have a lot of room to invest more energy in the face of climate change. Unfortunately, as the authors note, these budgets may need to change in the face of climate change, particularly for bivalves at the poles. As the oceans grow more acidic due to human CO2 emissions, growing their shells will start to take up more of their energy, which is currently not a major part of their budget.

A cold-water ecosystem dominated by Antarctic scallops. Source

Right now, the cold waters of the poles are refuges for organisms that don’t deal well with shell crushing predators. As polar regions warm, such predators will begin to colonize these unfamiliar waters. Polar bivalves may encounter the double whammy of needing to spend more energy to make the same amount of shell, but also find that it is no longer enough to protect them from predators that easily crack open their protective coverings.

I found this study to be an elegant and thoughtful attempt to fill in a gap in our current understanding of how organisms grow and how energy budgets are influenced by environmental variables like temperature. I instantly downloaded the paper because it answered a question that has long been on my mind. Maybe can sneak its way into my manuscript during the review process!