Hard shells aren’t actually that hard to make (yet)

antarctic20soft-shelled20clam20-20laternula20elliptica20001
One of the Antarctic bivalve species featured in this study. Source

Like all organisms, bivalves have a limited budget governing all aspects of their metabolism. If they put more energy into feeding (filtering the water), they can bring in a bit more food and therefore fuel more growth, but sucking in water takes energy as well, particularly if there isn’t enough food to be filtered out. Bivalves also periodically have to grow gonadal material and eggs for reproduction, expand their body tissue (somatic growth) and of course, grow their shells (made of of a mineral called carbonate). All of these expenditures are items in a budget determined by the amount of energy the bivalve can bring in, as well as how efficiently they can digest and metabolize that energy.

If a bivalve is placed under stress, their scope for growth (the max amount of size increase per unit time) will be decreased. Because they’re cold-blooded, bivalves are limited by the temperature of their environment. If temperatures are low, they simply can’t sustain the chemical reactions required for life at the same rate that endotherms like us can. They also may have to shut their shells and stop feeding if they’re exposed by the tide, or are tossed around by a violent storm, or attacked by predators or toxins from the algae that they feed on.

When their budget is lower, they have to make painful cuts, much like a company lays off employees if their revenues are lower. The question is which biological processes get cut, and when? My first chapter (submitted and in review) has settled temperature being the primary control on seasonal shell growth. Bivalves at high latitudes undergo annual winter shutdowns in growth, which create the growth bands I use to figure out their age, growth rate, etc. We’d be a lot closer to accurately predicting when bivalves suffer from “growth shutdowns” if we had hard numbers on how much energy they actually invest in their shells. A new study from a team led by Sue-Ann Watson of James Cook University attempts to do just that.

laternulagrowth-700
Diagram relating the growth bands of Antarctic soft-shelled clam with a chart showing the widths of those bands. Source

Collecting a database of widths for the annual growth rings of bivalve and gastropod (snail) species from many latitudes, Watson and her team were able to get a global view of how fast different molluscs grow from the equator to the poles. Because the unit cost of creating carbonate is determined by well-understood chemistry, they were able to create an equation which would determine the exact number of Joules of energy used for every bivalve to grow their shells.

They still needed a total energy budget for each species, in order to the percent of the energy budget that each bivalve was investing in their shells. They drew on a previous paper which had calculated the standard metabolic rates for each species by carefully measuring their oxygen consumption. We could do the same for you if you sat in a sealed box for an extended period of time while we measured the exact amount of oxygen going in and CO2 going out. Dividing the amount of energy needed to grow the shell by the total amount of energy used in the organism’s metabolism would give us a percent of total energy that the bivalve dedicates to adding growth layers to its shell.

That number is…not very large. None of the bivalves or gastropods they looked at put more than 10% of their energy into shell growth, and bivalves were the lowest, with less than 4% of their energy going into their shell. Low-latitude (more equatorward) bivalves have the easiest time, putting less than 1% of their energy into growth but getting way more payoff for that small expenditure. High-latitude polar bivalves have to work harder, because the lower temperatures they experience mean the reactions needed to create their shells are more expensive. In addition, most of that energy is going into the protein-based “scaffolding” that is used to make the shell, rather than the crystals of carbonate themselves. Organisms right now don’t have to put a whole lot of effort into making their protective shells, which could explain why so many organisms use shells for protection. That is good, because if shells were  already breaking the bank when it came to the bivalves’ growth budget, they wouldn’t have a lot of room to invest more energy in the face of climate change. Unfortunately, as the authors note, these budgets may need to change in the face of climate change, particularly for bivalves at the poles. As the oceans grow more acidic due to human CO2 emissions, growing their shells will start to take up more of their energy, which is currently not a major part of their budget.

A cold-water ecosystem dominated by Antarctic scallops. Source

Right now, the cold waters of the poles are refuges for organisms that don’t deal well with shell crushing predators. As polar regions warm, such predators will begin to colonize these unfamiliar waters. Polar bivalves may encounter the double whammy of needing to spend more energy to make the same amount of shell, but also find that it is no longer enough to protect them from predators that easily crack open their protective coverings.

I found this study to be an elegant and thoughtful attempt to fill in a gap in our current understanding of how organisms grow and how energy budgets are influenced by environmental variables like temperature. I instantly downloaded the paper because it answered a question that has long been on my mind. Maybe can sneak its way into my manuscript during the review process!

Back on social media!

I had taken a break from logging into Facebook/Twitter/Reddit for the last couple months because it was stressing me out. I was feeling inundated by political news that were making me feel overwhelmed and not in control of the information I was processing. So I disconnected for a while and my mind began to feel a lot clearer. The battery life on my phone also improved by at least 3x.

I realized that while I appreciate and respect the views of the people I follow, as a collective the news they were sharing was crowding out my own personal views on the issues. I seriously felt like I was being radicalized after being subjected to a firehose of competing political opinions. I was worried I was contributing to that problem and doing the same thing to other people.

But I like using Facebook and Twitter to keep in touch with my family, friends and colleagues. It is valuable to me to see pictures of your pets, news about whether you’re safe from the latest natural disaster, and links to your latest paper that’s headed straight to my references folder. So I’m back on FB/Twitter for those things, but I’ve set some strict rules for myself.

  • Only can log in on my computer. The phone makes it too easy and compulsive to log in frequently and scroll through. And I have to log out immediately after viewing, with only one login per day permitted.
  • No more than one post per day on any of the networks.
  • No more than one political post per month.
  • No replies to anyone that I don’t personally know.
  • No Reddit. I actually haven’t missed that one at all.

I hope I can find a way to engage and stay in touch with you all while not crowding out real life! Talk to you soon.

Things I wish I knew/did earlier in grad school

  • Keep a journal of every research-related idea you have and every research-related action you take. Seriously, find the most frictionless way you can keep notes and stick to it. Your brain will thank you later.
  • Ask for help whenever possible, but with the knowledge that many of the issues you have will have no troubleshooting manual.
  • Crude, hacked together and done is better than perfect and never finished.
  • Work when you feel productive. Sleep when you feel less productive. Use the benefits of being a self-scheduled researcher to your advantage.
  • Don’t feel guilty to be involved in grad student life and service. These activities give a mission and direction to your research.
  • Take on a mentee. It is such a massive boost to your own productivity to take charge of managing and encouraging another less experienced person’s work. It will push you to practice what you preach.
  • Make sure your family and loved ones know what you do and what is expected of you, so they aren’t upset when you aren’t free to talk or have to work a late night.
  • Don’t hold on to the paper you’re working on too long. Chances are that there is someone out there doing a similar project based on an idea that they had at the same time as you, and you don’t want to get scooped.
  • If someone more experienced than you who you respect disagrees with your findings, that doesn’t mean you’re wrong.
  • Don’t be afraid to overhaul a project you have based on new information. This is the stage of your career when you are not invested in a theory or particular method. You can quickly change tack to use new analyses and pursue new research questions with little or no cost. Your committee will understand.
  • NEVER show off how much you work. We all work a ton (yes, you do too, don’t let that impostor syndrome get you) and there is no need to hero-worship based on how many hours we work a week.

No Man’s Sky: An Environmentalist’s Review

No Man's Sky_20170915172052.jpg
Approaching a beautiful lake-filled green planet, which unfortunately turned out to be covered with hostile robots.

I’m entering the atmosphere of this planet in full knowledge that I don’t have the fuel to lift off again. Normally, this wouldn’t be an issue, but the weather strongly tends towards acid rain and the average temperature is well above 150°F. So when I’m landed, I’m going to have to be quick about harvesting some plutonium (an odd choice for fuel considering its rarity on Earth) to use for my ship’s launch thrusters. When I get out to do so, my life support systems immediately begin using power and I realize my harvesting tool is low on juice as well. I could easily die here, alone and hundreds of light years from the nearest real-life human.

No Man's Sky_20170915164713
My home base, on a frozen lake on the tundra planet I call home. One of the strange hog-faced, antlered bipedal herbivores is in the foreground.

The main enemy in No Man’s Sky is scarcity. Everything from your space-suit’s life support systems to the hyperdrive you use to travel between planets requires some amount of resources to power and repair. Most planets are not friendly in conditions. They can be frozen to -200 degrees, or +200 or both in a day. Windstorms and acid rain can sap away at your suit’s life support systems. You are truly subservient to the environment in No Man’s Sky.

No Man's Sky_20170917151427
Weird hopping pineapple creature in the foreground in this strange fungus-dominated toxic world, where acid rain quickly sapped my suit’s life support systems.

There is a stunning variety of animal and plant life present in the game. All environments and the inhabitants thereof are generated by an algorithm, meaning that the game’s creators can’t be fully aware of all the billions of worlds existing in their fictional galaxy. I have seen flying worms, giant predatory dinosaur-like creatures that chase me on sight, and what can only be described as a hopping pineapple. Each planet is its own ecosystem. Most creatures are uninterested or fearful of you, though a few do seem to chase me or attack in defense. Some attack each other.

No Man's Sky_20170906201211
A creature reminding me of a terror bird on a burning hot desert planet.

To be fair, the ecosystems are somewhat limited. I have yet to see truly giant trees rivaling the redwoods of my own real-life planet. I haven’t seen icebergs or glaciers, because each planet only has one real biome. There are no ice-caps or climate differences on each world, which is disappointing, but typical in science fiction (think Hoth or Tatooine from Star Wars). I haven’t seen a running river, which would likely be too computationally expensive to generate. All oceans and lakes seem to be static at a certain sea level. There are no differences in gravity between worlds, most likely to simplify gameplay. Star systems have planets and moons are not to realistic scale, with planets and moons far closer than they should be, probably for visual effect.

No Man's Sky_20170917162629
Triceratops-like creature and a weird tubby feathered animal, with a crashed freighter in the background.

Some of the design limitations are interesting from an environmental perspective. There are orbiting space stations, but no cities to speak of. The sparse planetary settlements have at most a few inhabitants in a few buildings. Did the civilization of this fictional galaxy suffer some calamity which decimated its population? Or did they make a conscious decision to spread out and dismantle their cities in subservience to environmental preservation? Perhaps No Man’s Sky is the most extreme manifestation of the Kuznets curve. As human societies mature and living situations improve, their policies begin to value conservation and public health instead of economic growth.

In this way, the civilization of No Man’s Sky has achieved a near-environmental utopia. The player’s actions, however are interesting in their persistence. When you destroy a plant or harvest resources, they do not return. The changes that you make are truly persistent, and the game does not fill back in the gaps. As I rode my buggy over the surface of my own planet, I felt a twinge of regret running over the strange coral-like creatures in the warm canyons between stretches of tundra, because they will not regenerate.

No Man's Sky_20170917152548
Remnants of a disbanded city? This world was a frozen archipelago with a yellow sky.

No Man’s Sky has been heavily criticized by many players, who felt it didn’t live up to the hype it received before release. Several updates have been added to improve the core gameplay and story in the last year. Regardless of the improvements of the game itself, I find the concept and environmental ideas in the game to be engrossing. As a real-life naturalist, the experience of exploration and nature-watching in a game is also fun, with the added novelty of knowing that every creature I see has likely never been observed before.

No Man's Sky_20170912234442.jpg
A modern settlement, in harmony with nature.

You are Isotopes (Part III)

This is the third part of a series about isotopes and why they’re useful and interesting to scientists.

Isotopes are the flavors of elements. And because our universe is made up of atoms of elements, every object can be thought of as a delicious smoothie of flavors. Scientists like me are trying to reverse engineer those mixtures and pick out individual tastes, in order to answer questions about our world.

For example, I work with giant clams. These guys build enormous shells made of a mineral called calcium carbonate: CaCO3. That means that every molecule in a clam’s shell contains a calcium atom, a carbon and three oxygens. But as you might know from reading the previous entries in this series, not all of those atoms are the same. They are a mixture of different flavors. We have some carbon-12 and 13 in there (so named for their atomic weights), and some oxygen-16, 17 and 18. Here I’m focusing on the stable isotopes, which are not radioactive and are called “stable” because they’re not going to self-destruct. There are radioactive isotopes in there too, but I don’t use those nearly as often in my work.

calcium-carbonate-powder-1291396
Officer, this is a pile of giant clam powder, I swear!

I am measuring stable isotopes of carbon and oxygen in my shell samples. To do this, I take a sample of powder, grind it up, weigh it, and put it into tiny little cups. We only need a very small sample: about 50 micrograms of shell material. A typical pill of tylenol contains over 300 mg of active ingredient, so about 6,000 of my samples will fit in a single tylenol regular strength pill, if you suddenly decided you needed a giant clam prescription.

deflect
Simplified representation of what’s happening in a mass spec. Source

This tiny sample is one of thirty that I can measure at a time. Those samples are reacted with acid and the CO2 gas that is released as a result of the reaction can be processed by a machine called a mass spectrometer. The mass spec, which is in the Stable Isotope Laboratory in my building, ionizes the molecules in that gas (gives them a bit of electric charge) and then those ions are flung through an electromagnetic field. That beam of charged gas is flung around a curve. That curve is where the magic of making a mass spectrum happens.

Think of the atoms in the CO2 gas from my sample as a bunch of racecars exiting the straightaway and starting around the curve on the racetrack. Only these racecars vary in weights. And the race organizers have greased the track at the curve so that they fling into the sides of the track when they try to turn. As the racecars fling into the sides of the track, they will separate according to their mass. The lighter cars will be able to make it further around the curve before they meet their demise because they have less inertia forcing them forward, whereas the SUVs in the race will barrel forward straight into the sides of the track. At the end, you have a spectrum of racecars poking out of the walls of the track, with SUVs first, then the coupes, then the compact cars and then the motorcycles, which almost made it around the bend, but not quite. Atoms in the mass spectrometer act the same way, and we measure how many collisions happen along each point of the bend in order to not only “weigh” the sample of gas, but also figure out how many molecules of each weight there are!

It turns out that it is quite difficult to measure the exact number of atoms of a particular isotope in gas, however. It is much more economical and feasible for the purposes of most researchers to simply compare our mass spectrum to the results from a standard. Much like there is a literal standard kilogram and standard meter in a lab somewhere in France which is used to keep track of how much mass is actually in a kilogram, there is a standard used by all researchers like me to describe our samples of carbonate.

6852716289_cca3c0a635_b
A collection of belemnite fossils from the Pee Dee formation, similar to the one used for the PDB standard. Source

The most common standard used is from a belemnite fossil from the Pee Dee formation in North Carolina. Belemnites are extinct squid-like creatures that formed an internal shell, and one of those internal shells was fossilized, unearthed by a researcher and ground up to become the reference for all other researchers following. Samples of the carbonate in its fossil had more carbon-13’s per unit mass than most other fossil specimens known.  Almost everything you measure will be “lighter” in terms of carbon, because carbon-12 is naturally so common on our planet.

Scientists needed a convenient way to put a number on this, so a simple formula was developed which would allow us to quickly communicate to each other how isotopically “heavy” or “light” a particular sample is in comparison to the Pee Dee Belemnite. The formula isn’t that important for our purposes but the units of its output are in parts per thousand, or “per mil” for short (same idea of how we shorten parts per hundred to “percent”).

The symbol for per mil is a percent sign with an extra little loop at the end: ‰. To make the shorthand complete, we also need to note that this is how much the carbon-13 to carbon-12 isotope ratio of a sample differs from the Pee Dee Belemnite. We do so, we use the Greek delta symbol (δ), commonly used in science and math to represent “difference or change from.” So a sample that has a carbon-13 to carbon-12 ratio which is 20 parts per thousand less than that of the Pee Dee Belemnite is written -20 ‰ δ13CPDB. There are other samples that can be used as well, including Standard Mean Ocean water (SMOW), and the Vienna Pee Dee Belemnite (VPDB). It’s important to note which you are using so that people know the scale of your measurement!

Phew, hopefully that didn’t confuse the hell out of you! Next time, I’ll talk about how different δ13C (and for oxygen isotopes, δ18O) can tell us different details about the life of an organism. Here’s a cute gif of a scallop as a chaser after all that science you read.

Local thief spotted in my backyard

IMGP5312

The brown-headed cowbird (Molothrus ater) is a notorious thief. This is merely a young thief which I observed in my yard; it’s still in training, but when it is an adult it will look more like this:

molothrus_ater_2
Source: Wikipedia

It will search out a nest of an unsupecting bird, perhaps a sparrow or other songbird, and it will sneakily lay an egg when the parents are away. The egg will hatch and the other birds will raise it as their own. This practice is known as brood parasitism. The unsuspecting sap that raises the young cowbird will unfortunately feed its own young proportionately less and its fitness will suffer as a result.

Sometimes, the victim figures out that one of the eggs isn’t its own and disposes of it. If the cowbird sometimes returns to the scene of the crime and if it discovers its egg is missing, it may destroy the nest in a darkly Darwinian form of payback called “mafia behavior.” Sometimes, a cowbird egg is an offer you can’t refuse.

A hinged shell does not a clam make (QUIZ)

Bivalves are so named for their two hard shell valves made of carbonate, linked by a soft ligament acting as a hinge. They use a strong adductor muscle to close their shell, and the relaxation of the muscle allows the springy ligament to reopen (you might be familiar with adductor muscles as the edible tasty part of a scallop). In deference to the bivalves, laptops and flip-phones are called “clamshell” designs. That satisfying snap into place when you spring the ligamen… I mean, hinge of a flip phone is an example of human design imitating the ingenuity of evolution. But it turns out that plenty of other members of the tree of life have also stumbled upon the durable idea of a hinged two-valve shell. On the other hand, plenty of bivalves have given up on the classic clamshell look. In fact, the ancestor of all bivalves had a one-part shell, and the hinge evolved later.

Test your knowledge by trying to identify which which pictures are bivalves and which aren’t. Answers and picture sources at the bottom!

A. brachiopod-semenov.jpg

B.IMG_20150808_120740529.jpg

C.

D.

E.

ostracod_waiwhetumontage_b_650.jpg

F.

G.

naticarius_plicatella_3_01_.jpg

H.

0fbc20dc-8bf8-4719-b6fd-06050caf85e3.png

I.

tn_burrowed_jpg.jpg

J.

K.

3630165727_a312f06fbc_o.jpg

L.

kuphus.jpg

ANSWERS

A. This is not even a mollusk, never mind a clam! It’s a different benthic (bottom-dwelling) invertebrate called a brachiopod, which make up their own phylum. To put that in perspective, brachiopods are as far from bivalves on the tree of life as you are (you’re in phylum Chordata)! Yet they evolved a similar look through a process called convergent evolution. If environmental needs are the same, organisms may come to the same solution multiple times. Much like wings for flight evolved independently in insects, birds and bats, bivalves and brachiopods both evolved a hinged shell as a form of protection from predation.

B. These are indeed bivalves: rock scallops commonly found off the coast of California (picture by me of an exhibit at Monterey Bay Aquarium). So similar to the brachiopods in their ridged, hinged shells. Like picture A, these guys specialize in living on hard, rocky nearshore bottoms. Some cultures do apparently eat brachiopods (I have not), but I have little doubt that rock scallops are tastier.

C. These are also bivalves: windowpane oysters. Also known as capiz shell, they are commonly used for decoration and art due to their beautiful, thin semi-transparent shells. A large industry harvests them off the shores of the Philippines, where they unfortunately are growing scarce due to overexploitation.

D. These are not bivalves! They are crustaceans called clam shrimp. They have little legs poking out of a hard hinged shell, and have been found in some of the harshest environments on earth, where they wait in extended hibernation, sometimes years, between bouts of rainfall.

E. Not a bivalve. These are another kind of crustacean called ostracods. Like clam shrimp, ostracods live in a hinged shell and swim around with the help of tiny legs, filter-feeding in the water column. Ostracods are everywhere in the oceans and in freshwater, but have undergone an extreme process of miniaturization from their ancestral form, and are now represent some of the smallest complex multicellular life known.

F. These are fossil ostracods. You can see why they are sometimes mistaken for bivalves! The givaway is that one valve is overhanging the other. Most bivalves have symmetry between the two halves of their shell, but ostracods and brachiopods do not.

G. This is a snail, so it’s a close molluskan cousin of bivalves. Some snails feature a hinged lid at their shell opening called an operculum. This operculum can be closed to protect from predators and also seal in water to help land snails from drying out between rains.

H. This is a bizarre bivalve called a rudist. They were common during the time of the dinosaurs but went extinct during the same extinction, 66 million years ago. While they come in many bizarre shapes, this elevator form (or as I prefer to call them, trash-can form) would have been stuck in the sediment with its small lid poking out at the surface. They could open and close the lid to filter-feed.

I. This is a giant clam, Tridacna crocea! Its shell is hidden, embedded in the coral that has grown to surround it on all sides. Only the mantle (soft “lips”) are exposed, and are brilliantly colored by the symbiotic algae in its tissue. It harvests the sugars made by the algae for food. Despite being embedded in the coral, the clam does have enough room to close and pull back its mantle if a predator approaches.

J. This is a one of the weirdest modern bivalves, called a hammer oyster. These guys are found in the tropics, and the hammerhead part of their shell is actually their hinge, extended at both sides. The hinge provides the surface area needed to “snow-shoe” on top of the soft sandy bottom where they live. Other bivalves sometimes take advantage and live on the oyster like a raft!

K. This is a different brachiopod. Notice the lack of symmetry between the valves which gives it away.

L. This is by far the weirdest modern bivalve, a shipworm. These guys live buried deep within wood and are the number-one killer of wooden ships. They secrete a long tube of carbonate and have largely given up the hinged lifestyle, looking more like worms than mollusks.

You are isotopes (Part II)

This is the second part in a series how isotopes work and how they are scientifically fascinating. Part I here

It turns out a horse is not just a horse, of course. The horse is a collection of atoms, and each of those atoms has a particular isotopic “flavor”, and the collection of isotope types in the horse tells a story.  At the end of the day, scientists are simply interested in reading and telling stories about our world. The tail….er, tale of the horse is written by myriad interacting processes in the universe which influence the horse’s stable isotope ratios.

As I mentioned last time, carbon-12 is much, much more common than carbon-13 is on our planet, due to nuclear fusion of helium-4 in the sun. there are nearly 99 carbon-12’s on earth for every carbon-13. But that’s the base ratio if you took our whole planet, put it in a blender and mixed it all up. If you measured a particular object, such as a horse, it likely does not follow that measure exactly. It has become differentiated from the global average by numerous factors which have altered the isotope ratio.

In isotopic chemistry, fractionation is our name for any process which creates a preference for a certain isotope. If chemical reactions had no bias toward any particular isotope, that 99 to 1 ratio of carbon-12 to carbon-13 would be present in literally everything including you and me. But it turns out that the biochemical dice are loaded- to make the ratio even more biased!

The enormous Rubisco enzyme. No one said photosynthesis was simple. Source: Wikipedia

Photosynthesis is the process by which plants take carbon dioxide gas in the atmosphere and “fix” it to make sugars, which they then use for food. The core enzyme responsible for this carbon fixation is called Rubisco (short for Ribulose-1,5-bisphosphate carboxylase/oxygenase). This enormous molecule is likely the most abundant enzyme on earth. And it turns out that it has a favorite flavor when it comes to the carbon it fixes into sugar.

In fact, the entire plant is discriminating against carbon-13 in several of the processes of photosynthesis. Carbon dioxide molecules diffuse more quickly into the plant’s leaves if they include the lighter carbon-12 rather than carbon-13. “Light” CO2 also dissolves more easily in the plant’s fluids. But the biggest fractionation happens when the Rubisco molecule gets hold of CO2 and breaks it. At each of these steps, the light carbon-12 is more likely to be used by the plant than its heavier siblings. There are various thermodynamic reasons for why this is the case, but the plant is essentially a sieve removing more of those heavy carbons at every step. At the end of the process, the plant is left isotopically “lighter” than the CO2 gas surrounding it that it breathes in.

Because you are what you eat, this means that you are suspiciously carbon-light, and there’s nothing you can do about it. Should have thought of that before you decided to be dependent on plants as the factory for your carbon-based molecules. Next time, we’ll talk about how we measure this, and the kinds of science that can happen once you have a nice consistent measurement to use to compare isotopic ratios between samples.

You are isotopes (Part I)

As you may well know, every element is defined by its number of protons contained the nuclei of its atoms. Hydrogen has one. Carbon has six. This is non-negotiable. But every element can be found in multiple “flavors” known as isotopes. This flavor depends on the isotope’s atomic mass, which is determined by the number of neutrons present in the nucleus of that atom. Neutrons are kind of like atomic ballast. Unlike protons, which have a positive charge, they are neutral, but they do have a mass. Different isotopes have different numbers of neutrons, determining their atomic mass but preserving its particular elemental identity (which would only change if you changed the number of protons present).

Let’s focus on carbon, an element which I think about daily, though every element has isotopes and I could pick many other examples. Hope you’re OK with that, but if not it’s my blog so deal with it. So carbon has been found or created in up to 15 flavors. A whopping 98.9% of all the carbon on Earth occurs as carbon-12 (written as 12C), which has six protons and six neutrons, adding up to an atomic mass of about 12 atomic mass units (amu). It’s the most common because it’s the product of three helium-4 isotopes fusing together, each weighing 4 amu + 4 amu + 4 amu adding to make a single carbon-12. This is a very common reaction in stars, and because you are stardust, it is also the most common flavor of carbon in you.

But we make other flavors by adding neutrons. You can make carbon-13 with six protons and seven neutrons. This is a rare flavor, accounting for almost all of the remaining 1.1% of carbon found on earth. It is also the only other stable form of carbon. I note that it’s stable because all the other 13 known flavors of carbon are unstable, and many are only known from the laboratory because they are too short-lived to be found in the environment.

It turns out that if an element’s atomic nucleus is too light, or too heavy, that element will become radioactive and decay with time, continuously firing off pieces of itself out of frustration. Carbon-14 is the most famous and common of these radioactive isotopes of carbon, and it still only makes up 1 in every million million atoms of carbon on earth. Carbon-14 fires off particles and decays into nitrogen-14 because it is more stable orientation for the protons and neutrons to be in, for physics reasons I won’t get into here.

Carbon-14 does this in a very predictable, methodical pattern. It’s difficult to predict when an individual carbon-14 atom will do this, but if you take any object you have just created, like a piece of pottery, for example, you can be pretty much certain that in 5,730 years, only 1/2 of the carbon-14’s will still be present. The rest decided they’d rather be nitrogen-14. This is non-negotiable and you’d best learn to accept it. But it means that we can sniff out the age of a lot of interesting mysterious objects if we know the amount of carbon-14 present in the environment (which we often do) and measure the amount present in the object today. You have some restrictions. For example, for objects that are too old, too little of the carbon-14 would be left for you to measure accurately.

Carbon-14 dating, often just called radiocarbon dating, is very useful in figuring out the ages of stuff, but I’m mostly interested in the stable isotopes of carbon. Next week I’ll talk about why that is, and what kind of questions I can answer by looking at amounts of different stable carbon isotopes in a sample. See you then!