New job! Where I’m going and how I got here

Richmond, California’s Finances Remain Shaky
Richmond, CA from the air, showing the turbid waters of the SF Bay

Well folks, it finally happened. I found a permanent scientific job. On January 31st, I’ll be starting as an Environmental Scientist at the San Francisco Estuary Institute (SFEI), working on the Nutrient Management System (NMS) program. NMS is a group trying to understand how nutrient supply in the San Francisco Bay works.

The SF Bay is an extremely nutrient-enriched environment (eutrophic) due to human pollution and natural factors, to the extent that if all other factors were equal, scientists would expect it to be a nasty green sludgy mess. Yet up to today, due to factors that are still debated, the SF Bay is in much better shape than it should be. It is not a dead zone, choked off by algal blooms and oxygen-starved in the way that other high-productivity regions such as parts of the Gulf of Mexico have become. Those factors may include the cloudiness (turbidity) of the Bay’s water limiting algae growth, naturally rapid tidal mixing with ocean water, and the influence of clams and other grazing animals keeping the populations of potentially harmful plankton suppressed.

However, there is also evidence that this resilience may be fading as water temperatures in the Bay increase and the ecology of the system changes with climate change. Oxygen levels are dropping and levels of harmful algae are rising, which endangers the health and livelihoods of millions of people in the SF Bay area who depend on a clean, ecologically functioning SF Bay. In my role at NMS, I will be assisting in processing and interpreting huge quantities of environmental data on temperature, dissolved oxygen, water flow, light levels, algae concentrations, and harmful algae toxins, to help figure out how the SF Bay works and how we can protect it. I will be assisting another scientist joining the team in deploying more sensors to monitor the Bay on a minute by minute basis, and also packaging the data to help create models which allow us to figure out the various moving parts that make it work.

In a way, this is oddly similar to the work I’ve done during my postdoc at Biosphere 2, where I’ve been growing giant clams in their 700,000 gallon ocean tank since May 2020. The clams are biological sensors have been recording the environment of the Biosphere 2 ocean through their shells and valve opening/closing activity, and I have had to decode their diaries through comparison with the environmental data we collect on light, pH, dissolved oxygen, chlorophyll and other measurements. The SF Bay is a site of enormously influential research which has been important to understand estuaries around the world, but it is still a mysterious body of water in many ways. NMS is trying to understand how all its complex pieces fit together, much like I’ve been doing at Biosphere 2, which is why I jumped at the opportunity to apply for the job.

I also am excited to get involved in this work because it’s immensely important for everyday people’s lives. The SF Bay provides millions of people with food, employment, recreation and overall well-being, and the science that NMS produces has real-world value for making policy and a concrete plan to keep the Bay healthy. It represents exactly the kind of science that I wanted to do since I first jumped into environmental biology as a 19-year-old at USC. At that time, I was interning at JPL studying historical trends in California rainfall data, so this new job represents a homecoming of sorts to California water science!

This job will be a bit of a change of pace from my present work as at first, because I’ll be part of a scientific team with a shared mission, unlike most of my prior research, where I came up with ideas, pitched them to my advisors and funders and then coordinated the projects to collect and analyze data. There will be more teamwork, and while academic publications will still be one of our products, we also will be writing reports for policymakers and stakeholders who are deciding on how to regulate nutrient levels in the Bay.

I also won’t be working with clams on an everyday basis! But as I mentioned before, clams do play a major role in the Bay in terms of filtering the water, and so it is likely we will need to understand the activities of the clams and other grazers to explain the trends in nutrients that we see. I didn’t start as a Clam Man, but my curiosity about clams meant that my attention kept being drawn to these enigmatic but influential creatures, and I expect that dynamic will continue. I am, and always will be, Dan the Clam Man.

I will continue to get my present clam projects out the door as publications, so there will be lots of clamsplaining in the future months as those get out the door. Regarding the Biosphere 2 clams, we still have four individuals of Tridacna derasa (the smooth giant clam) growing in the 700,000 gallon ocean tank, and intend to leave them as long-term research subjects and an exhibit for visitors to enjoy and learn about. We also have proposals in the work for new projects to expand on this work. I hope I can continue to visit in the coming decades and see our clams grow to be true giants, two feet in length! I also hope to acquire pet giant clams of my own, with names rather than specimen numbers, to be my friends rather than my research subjects.

I’ll be starting the new job remotely at the end of this month, to give myself time to tie off loose ends in Tucson, intending to move to the Bay Area by March. I will really miss Biosphere 2 and Tucson, but this isn’t the last they’ll see of me, because my collaborations with people here will continue into the future. I knew from the start as a postdoctoral researcher that my position would not be permanent, but it is still bittersweet to leave. I will miss hiking in the Sonoran desert, swimming in the Biosphere 2 ocean tank and also my advisor Diane Thompson and her lab here, full of people who have been a joy to work with.

But I am excited for this new chapter, because the postdoc life has been lately losing its luster for me. I’ve enjoyed being a postdoc for the freedom it entails, both in my research topics and the way I structure that work. But postdoc work is emotionally exhausting, as I have been a journeying academic contractor on “soft money”. My employment for the following year has always been contingent on the next grant coming through. Moving between different institutions on different continents has been a big weight on my family and my partner, who I miss greatly.

As a postdoc, while I’ve had fun and wouldn’t change anything about it, I have felt like a plane trying to take off in unfavorable weather. I could see the end of the runway approaching as my current funding ends in May, which was a scary feeling. I’m willing to hustle and fight for research funding, but not my basic income. Looking back, I have applied to around 45-50 academic positions (including postdocs) since finishing my PhD and got interviewed for less than ten percent of those, and received offers for two postdocs. When I got the offer from SFEI, which was itself a rigorous, multi-stage process over months, I cannot describe what a relief it was to clear out my “job applications” folder in my to-do list. This SFEI job will allow me to pursue marine science that helps the environment and people, in a more emotionally sustainable way.

I’m excited to start my next chapter and share with you all the discoveries our team makes about the SF Bay, while also continuing to clamsplain here on my own time. Keep an eye out for my Biosphere 2 studies, which will be rolling out over the next months as the data arrives!

Biosphere 2 Update!

A view from my parking spot at work

I am now several months into my postdoctoral fellowship at Biosphere 2 in Oracle, Arizona! I am working with Professor Diane Thompson on a project measuring the shell and body chemistry of giant clams in Biosphere 2’s huge reef tank. Our goal is to find better proxies (indirect ways of measuring) the symbiosis of these clams with the algae they farm within their bodies. The controlled, closely monitored conditions of the Biosphere 2 ocean tank represent the perfect balance between the real ocean and the more controlled environment of a lab. Using trace metals and isotopes in their shells and tissue, we can trace back the ways that clams record their own internal biology. Wild giant clams make chemical records via the growth lines in their shells, similar to tree rings. These have been the subject of many cool past studies, but there are aspects of the “language” they use to write their shell “diaries” that are poorly understood. Much like researchers used the Rosetta Stone to decode heiroglyphics, we are observing clams as they grow in order to better translate the shell diaries of their prehistoric ancestors. Doing so, we can better understand how their ancestors reacted during past periods of climate change, and identify similar bivalves in the fossil record which may have harbored symbionts.

A view of the ocean tank at Biosphere 2

I started my postdoc remotely in May. The following months were spent sheltering at home in Southern California with my mom, supervising the installation of a cohort of giant clams into the 700,000 gallon ocean tank over Zoom. It felt like a science fiction movie, watching technicians Katie Morgan and Franklin Lane from hundreds of miles away on my computer screen as they nurtured and installed the little clams in their new home. I felt like Mission Control back on earth, watching a group of space colonists work with strange alien creatures.

Some of the T. derasas in the Biosphere tank

But in August I was able to finally move to Tucson to meet these clams in person! We had three species in the first batch: Tridacna derasa, T. squamosa and T. maxima. Of the three, T. derasa (the smooth giant clam) has proven to be the most successful in the Biosphere 2 ocean tank. All of the derasa clams from May have survived and thrived, attaching themselves to the bottom with byssal threads and growing their shells, both very positive signs of clam health!

Some of our newer batch of T. derasa in the quarantine tank

So we have doubled down on T. derasa and installed 11 more individuals last week, sourced from Palauan clam farms via a reef supply company in Florida called ORA. They are currently in a shallow quarantine tank where we will monitor them for disease and unwanted hitchhikers before introducing them to the broader Biosphere tank.

The workers at Biosphere 2 are very creative problem solvers. Giant clams need intense amounts of light to sustain their symbiotic algae and create food for themselves, a quantity of light higher than is available in the current Biosphere tank. To provide a light supplement, the engineering team at Biosphere 2 constructed a floating lighting rig with hanging LED lighting, right over the lagoon where we have the clams!

The lighting rig glows with a blue light as the sun goes down outside the Biosphere

To make sure the clams have enough light, we installed a Li-Cor light sensor to measure the exact amount of photons (light particles) hitting the clams over the course of a day. The light is measured in units of micromoles of photons per meters squared per second. A mole is 6.02 * 1023 particles, and other clam experts like James Fatheree have suggested that the clams need light levels of at least 200 micromoles/m2s to make enough food for themselves. That’s 120,400,000,000,000,000,000,000 light particles we need to hit every square meter of their habitat every second. The clam channels as many of those photons as it can to its algae residing within tubes in its tissue. The symbionts use it in photosynthesis to make sugars, which they share with their host. A well lit giant clam is a happy, well-fed giant clam! But because the glass dome of Biosphere eats up some of the light, and plankton and floating particles in the seawater eat up another portion, we use the lights to make sure the clams have the boost they need to maintain their symbiosis like they would in the clear, shallow waters of a tropical coral reef.

The Li-Cor sensor floats above the clams, telling us how much light they’re getting

Much like a new dad might read parenting books to get ideas for baby care, I am always poring through the literature trying to figure out how to maximize the growth of these clams. Dr. Fatheree is kind of like Dr. Lipschitz from Rugrats, except unlike the suspect childcare advice in the show, this real-life giant clam advice is very valuable. Like human babies, these clams can be a challenge! The clams sometimes decide to move around and get themselves into trouble, requiring us to rescue them if they get trapped behind a rock or under a pile of sand. So I have had to do a fair amount of clam-herding during my time here.

We are growing the clams for science, and there will be data to collect. We will be monitoring data like the trace metal chemistry of the clams’ tissue and shells, the color of their mantles, and the pH, temperature and oxygen levels of their environment, all to relate together to make the best clam record of their environment possible. So far, I have been snorkeling in the tank every couple days maintaining their setup. Next week, I will dive in the Biosphere tank for the first time to collect data on their shell chemistry! I have other projects in the works to measure their valves opening and closing using magnetic sensors, and to measure their color changes through time through computational photography.

That brings me to what I’ve found to be the coolest part about Biosphere 2: the people. Something about this place attracts creative, brilliant, can-do people who solve problems on the fly and are always jumping into the next project. It has been a privilege to learn and pick up technical skills from them in the brief time I’ve been here. This place is really like a space colony out of The Expanse or Silent Running. There are endless valves, pipes, tanks, exchangers and other hardware needed to keep Biosphere 2 running. Getting to witness the technical competence behind the whimsical solutions the staff comes up with, like the floating light rig, has been the most exciting part of this job for me. Everyone has a deeply ingrained curiosity and passion for science that is inspiring to see; they are as interested in my clams as I am in their corals, tropical plants, and geochemical experiments. I would argue that the human team behind Biosphere 2 is a bigger treasure than the unique metal-and-glass structure they work under, and I look forward to seeing the results all of the collaborations we have in the works!

Why eating clams sometimes makes us sick (Part 1 of 2)

Image result for oysters
Is eating these a gamble? Science can help improve our odds!

I am often asked if I eat clams. The answer is yes: while I love to observe live clams and appreciate their abilities, I will eat a good clam chowder or plate of grilled scallops if presented with the chance. While I’m generally not a fan of super fishy-tasting foods, I eat bivalves with a clear conscience because farmed mollusks represent a super sustainable way to get protein! However, as many of us have learned the hard way, shellfish can sometimes produce unwanted results later after the meal, if the animals are contaminated with food poison. Eating such “bad” clams can produce a spectrum of food poisoning symptoms ranging from vomiting and diarrhea to memory loss to even paralysis and death.

Humans have known the hazards of eating shellfish for a very long time. It has been suggested that the ban on shellfish present in kosher and halal dietary rules arose as a preventative measure to protect from food poisoning (though eating fish, land animals and even vegetables can poison people in numerous ways as well). Studies of oysters have determined that ancient peoples of modern day Georgia from 5000 years before present selected their season of harvest based partially on knowledge of the seasons when such poisoning was most prevalent in their area.

How and why does this happen, and what can we do to prevent it? It’s a billion-dollar question, because when flare-ups of shellfish food poisoning happen, they are hugely costly to fishermen and the food industry, costing millions of dollars a year in lost business when fisheries are forced to shut down and products are recalled. Such events are increasing in frequency and severity. Which makes it all the more strange that these shellfish poisoning events are not the fault of the bivalves per se, but rather what they’re eating.

oyster.png
Note: people generally get annoyed when you start to point out the body parts of the oyster they’re about to swallow whole. Source

Almost all bivalves are filter-feeders, using their gills to gather small passing food particles, which they then either ingest or discard based on the quality of the food item. Clams are cows crossed with Brita filters, and for many species of clams which we eat, the reason they do all this filtration is to find phytoplankton food. Phytoplankton are microscopic algae suspended by ocean currents that make their living from photosynthesis. They are a hugely plentiful and high-quality food item, making up a huge amount of the biomass available in the ocean. Like plant-life on land, phytoplankton are highly seasonal in their appearance, rising and falling in abundance in periodic “bloom” events.

an image of red tide in Florida
Aerial view of a red tide off the Texas coast. Source: NOAA

But as Spongebob Squarepants taught us, plankton are not always peaceful. Many types of algae produce toxic compounds which may be integrated into the body parts of bivalves that eat them. Scientists call the blooms of algae which produce toxins “Harmful Algal Blooms” (HABs), and such events are growing in frequency and cause huge harm to marine life and sicken thousands of people per year. There are many algae species which cause HABs all around the world, sometimes visible as “red tides,” but not always. When HABs occur, they can lead to mass deaths of higher animals in the food chain that feed on clams such as marine mammals and seabirds. In fact, HABs are at their most dangerous to humans when they catch us by surprise.

source.gif
Who me? I’d never!

https://cdn.coastalscience.noaa.gov/csmedia/2014/02/K-mikimotoi.jpg
Microscope view of the toxic dinoflagellate Karenia. Source: NOAA

When humans eat bivalves which have been dosed with such marine toxins, many types of poisoning can occur. Brevetoxin is produced by a type of dinoflagellate phytoplankton Karenia as well as other species, and when humans are exposed, we can suffer from Neurotoxic Shellfish Poisoning, which causes vomiting, diarrhea and even neurological effects like slurred speech. Saxitoxin is produced by a variety of plankton species including dinoflagellates and freshwater cyanobacteria. When ingested in clams (such as the butter clam Saxidomus which gave it its name), fish or other animals, it can cause Paralytic Shellfish Poisoning, a sometimes fatal syndrome which shuts down nerve signaling, leading to temporary paralysis.

So we know it’s bad for humans to ingest these toxins. What is it doing to the clams? Oddly enough, some types of toxins like saxitoxin are not that harmful to the clams or other plankton eating animals, allowing them to accumulate huge amounts in their bodies with little ill effect. Its presence does not seem to influence their feeding behavior much, or their growth after exposure. Its status as a neurotoxin in mammals might be a total chemical and evolutionary coincidence, as researchers suggest that it may actually serve as a signal in some part of the algae’s mating cycle. This also may be the case for brevetoxin, which appears to be produced when Karenia is under environmental stress. But there is not much agreement in the HAB and aquaculture research fields, because there are many types of algae, which may produce their toxins for many reasons, and it is very hard for us to zoom in to the scale of the microbe and out to the scale of the ecosystem at the same time, to find any kind of universal evolutionary role of these toxins. Some researchers insist that some bivalves are influenced negatively by brevetoxin, but only at the juvenile stage during major bloom events. The effects of the toxin may only influence certain species, or only become significant if the toxin reaches the digestive tract of the bivalve. Overall, research into impact of HABs on clams is still a topic of active research, and the idea that the microbes produce these toxins to defend against bivalve predators is definitely not a slam-dunk, easily proven hypothesis. While some clams are negatively affected by the toxins, it is not consistently observed across species in a open-and-shut way, and it can be a subtle effect to observe and quantify scientifically.

giphy
Karenia to mammals: Oops!

The more I read about this stuff, the more shocked I am at the incredible complexity of marine algae and their toxins. I only started reading about them trying how to to understand how they influence bivalves. I was hoping to find some evidence of their effects on bivalve growth that I could apply back in time in fossil shells to understand the historical occurrence of HAB events. It’s important to understand HABs because they hurt people, cost our society a lot of money and if we understand how to avoid them, we can help minimize such impacts in the future as HABs continue to become more common. In my next post, I’ll talk about some of the ways that researchers have come up with to measure and monitor HABs, so that we can eat clams as safely as possible.

What good is a clam?

Picture1

When I mention to people that I study bivalves, I can sometimes sense from their facial expressions that they are secretly asking “why?” While clams are perfectly content to keep doing what they’re doing without being thanked, I think it’s important to enumerate all of the ways they make our world more livable and functional.

vaughn.PNG
Various roles that freshwater mussels can play in their local food webs (Source: Vaughn and Hoellein, 2018)

Bivalves are ecosystem engineers. While they may seem rather stationary and not up to much at any particular time, they are actually always working to actively maintain their habitat. The majority of clams are filter-feeders, meaning that they use their gills to gather particles from the water column for food. Some of these particles are ingested as food and later pooped out. Some inedible particles are discarded immediately by the clam as “pseudofeces”. Both mechanisms serve as a bridge between the water column and the benthos (the sediment at the bottom). In this way, clams are engines that take carbon fixed by algae floating in the water and transfer that material to be stored in the sediment. Their bodies also act as nutrition to feed all sorts of animals higher on the food chain like sea stars, lobsters, seabirds, sea otters and humans that depend on bivalves as food. They are literally sucking up the primary productivity (algae) to be used by the rest of the food chain.

03-20ae43y.jpg
The filtration rate of oysters. Graphic from The Nature Conservancy

Different clam species vary in their precise filtration rate (how fast they can inhale and exhale water, filtering the particles within), but it is prodigious. Some freshwater mussels, for example, can pick-through 1-2 liters of water per hour for every gram of their own flesh. Since these individual bivalves can weigh over 100 g, they are capable of picking the food out of an immense quantity of water. In doing so, bivalves help improve the clarity of the water column, allowing more sunlight to reach deeper into the water body (the photic zone), providing more energy for additional photosynthesis to occur. While there are examples where invasive bivalves such as zebra or quagga mussels take this phenomenon too far, in well-functioning ecosystems, the filtration activity of clams helps improve the productivity of the community.

Oystershells.jpg
An oyster reef. Source: The Nature Conservancy

Bivalves help make sediment through their filtration of material from the water column, and they also engineer and manipulate the sediment directly. Some bivalves, like oysters, are able to make huge mounds of dirt that serve as habitat for all sorts of life, increasing the diversity of the community. They do so both by excreting sediment, and also by passively trapping it between the shells of neighboring oysters (“baffling”). By doing so, they reduce rates of coastal erosion and increase the biodiversity of wetlands. For this reason, New York and other communities plan to seed oyster reefs to help fight sea level rise and reduce the threat of storm surges like the one that occurred during Superstorm Sandy.

bioturb.PNG
Comparison of sediments without bioturbation by digging animals, and with. Notice how the non-bioturbated sediment is layered and darkened due to activity by anaerobic bacteria, while the well-oxygenated, mixed sediment is light all the way through. From Norkko and Shumway, 2011

Other “infaunal” bivalves (burrowers) help to aerate the sediment through their tunneling, bringing oxygen deep under the surface of the dirt. This mixing of the sediment (also called bioturbation) ensures that nutrition from deep under the sediment surface is again made available for other organisms. Some bivalves can bore into coral reefs or solid rock, creating burrows which serve as habitat for other animals and can free up minerals for use by the surrounding ecosystem. Helpful shipworms assist in eating wood, assisting in returning nutrients stored in that tissue to the ecosystem as well.

https://media.springernature.com/original/springer-static/image/art%3A10.1007%2Fs00338-005-0494-2/MediaObjects/338_2005_494_Fig1_HTML.jpg
Enormous grouping of giant clams in a lagoon in French Polynesia. From Gilbert et al., 2005

Bivalves of course are also famous for their shells, and this activity also provides habitat to sponges, snails, barnacles and many other encrusting organisms specially adapted to live on bivalve shells and found nowhere else. Giant clams are the most legendary “hypercalcifiers,” and in some regions like New Caledonia can rival reef-building corals in terms of biomass. In areas where soft-bottoms dominate, bivalves like hammer oysters, adapted to “rafting” on the quicksand-like surface of the soft sediment, can assist by providing a platform for other animals to take refuge. In the deep sea, bathymodiolid mussels and other chemosymbiotic bivalves can feed directly on the methane and sulfur emitted from hot vents or cold seeps with the help of symbiotic bacteria, creating dense reefs which provide food and habitat for all sorts of life. Even once the clams die, their shells can continue to serve as homes for other creatures.

redcrab-600.jpg
Crabs feeding on Bathymodiolus in the deep sea (NOAA)

The shells of clams provide great scientific value in understanding our world. Much like tree rings serve as a record of environment thousands of years into the past, growth rings in clam shells serve as a diary of the animal’s life. These rings can be yearly, lunar, tidal or even daily in rhythm, with each ring serving as a page in the diary. The chemistry of those “pages” can be analyzed to figure out the temperature the clam experienced, what it ate, whether it suffered from pollution, and even the frequency of storms! The study of rings in the hard parts of animals is called sclerochronology, and it’s what first drew me to study bivalves. I was so fascinated by the idea that our beaches are covered with high-resolution records of the ocean environment, waiting to be cut open and read.

komagoe.png
This giant clam shell recorded an interruption in the animal’s daily growth caused by a typhoon! From Komagoe et al., 2018

While they don’t owe us anything, clams provide a lot of value to humans as well, serving as a sustainable and productive source of food. Humans have been farming bivalves for thousands of years, as evidenced by “oyster gardens” and shell middens which can be found all over the world. Particularly in seasons when food is scarce on land, native peoples could survive by taking advantage of the wealth of the sea, and bivalves are one of the most plentiful and accessible marine food sources available. But they aren’t just the past of our food; they may be part of the future. Bivalves are one of the most sustainable sources of meat known, requiring very little additional food to farm and actively cleaning the environment in the process. Mussels grown out on a rope farm are an easy investment, growing quickly and with very little required energy expenditure. Someday, giant clams may provide the first carbon-neutral meat source, as they gain their food from symbiotic algae within their flesh. I have never eaten one, but I’ve heard they’re delicious.

Conchero_al_sur_de_Puerto_Deseado.jpg
A shell midden in Argentina. Photo from Mikel Zubimendi, Wikipedia

Image result for mussel farm
Mussels being farmed on ropes

Clams are heroes we didn’t know we needed and maybe don’t deserve. They ask for nothing from us, but provide vast services which we take for granted. So the next time you see an inconspicuous airhole in the sand, thank the clam that could be deep below for aerating the sediment. The shell of that long-dead mussel at your feet may have fed a sea star, and now is a home for barnacles and many other creatures. While that mussel was alive, it sucked in algae to improve water quality on our beaches. And the sand itself may contain countless fragments of even more ancient shells. Clams silently serve as an important cog in the vast machine that makes our oceans, rivers and lakes such amazing places to be. Thank you clams!

 

Thoughts of a clam

To us active, dynamic mammals, the humble clam can appear positively…inanimate. Their nervous system is decentralized relative to ours, lacking any sort of brain, and to the untrained eye, it can appear that their only discernible reaction to the outside world is opening or closing. Open = happy, closed = not happy; end of story, right? Some vegans even argue that the clams are so nonsentient that it is okay to eat them and think of them as having no more agency than a vegetable!

You might already have predicted I intend to tell you about just how animate and sentient clams can be. But let’s start out by describing the nuts and bolts of their nervous system. As with many invertebrates, their nervous system is distributed throughout their body as a system of ganglia. Ganglia are clumps of nerve cells which may have local specialization, and transmit messages within neurons using electrical potentials. At the connection between cells (called a synapse), neurotransmitters are used to pass signals to the next cell. Researchers have found that bivalves use “histamine‐, octopamine‐, gamma‐aminobutyric acid‐ (GABA)…like immunoreactivity” in their central and peripheral nervous systems, much like us vertebrates do, and other studies have even found that the response to serotonin and dopamine is localized in nervous tissue linked to different organ systems.

veligernerve.PNG
Nerve cells (bright green) highlighted in a larval oyster with fluorescent dye (from Yurchenko et al 2018)

These systems of chemical nerve transmission are truly ancient, likely dating back to the formation of complex animal body plans in the earliest Cambrian. Researchers have great interest in studying these nervous and hormonal signaling systems in mollusks because they can shed light on the relative flexibility and limitations of these systems throughout the animal tree of life. Characterizing these systems can also allow us to understand the mechanisms that bivalves and other animals use to react to environmental stimuli.

poly-gill-detailsem
Electron microscope view of gill cilia, zoomed in 1000x (from Dan Hornbach)

Like humans, bivalves spend a lot of time and effort eating. Most bivalves eat by filtering food from passing water with tiny cilia on their gills. These cilia work to capture food particles and also act as a miniature rowing team moving water along the gill surface. The bivalve needs a way to control this ciliar activity, and researchers found they could directly control the speed at which oysters move their cilia by dosing them with serotonin and dopamine, which respectively increased and decreased activity.

Bivalves also work very hard to make babies. Most bivalves reproduce by releasing sperm and eggs to fertilize externally in the water column. To maximize their chances to find a mate, they typically save up their reproductive cells in gonads for multiple months and release them in a coordinated mass spawning event. It appears that this process is controlled by hormonal releases of dopamine and serotonin. Researchers have determined that serotonin concentrations vary through the year, with mussels in New England using it to regulate a seasonal cycle of feeding in summer, followed storing of that energy for winter. During the winter when food is less available, they use that stored energy to bulk up their gonads in time for reproductive release in spring months, when their larvae have plentiful access to food and oxygen, ensuring them the best chance of survival. In recent decades, aquaculturists have learned to use serotonin injections to induce spawning in cultured clams, to ensure they will have a harvest ready at a certain time of year.

So bivalves are very sensitive to the seasons. How about shorter term sources of excitement? You might have observed this yourself through the clam’s most iconic activity: opening and closing its shell. Clams close their shells with powerful adductor muscles which pull the two valves together. A springy ligament at the hinge pulls the shell open when the muscles relax. Just like us, the clam needs to use nerve cells to signal the muscle to do its thing. In addition, two different sets of ganglia act to control the foot that some bivalves can extend to dig into sand, with one ganglion acting to extend the foot and the other causing it to contract. While clams don’t have a centralized brain with specialized regions for different uses like we have, this represents a sort of specialization of neural systems with a similar result.

Clam licking salt - Imgur
This iconic gif is often shared along with the claim it shows a clam “licking” salt. It is actually using its foot to search for a place to dig. The salt was not needed.

When a certain neuron is used repeatedly, it can form a cellular memory allowing the organism to acclamate (ugh sorry) and moderate its response to a particular stimulus over time. Giant clams, for example, close their shells when their simple eyes detect a shadow overhead. This behavior can protect them from predation. When I conducted some of my PhD research, sampling body fluid of aquarium and wild giant clams with a syringe, I noticed that captive clams didn’t close up in response to my shadow overhead, while wild clams required me to sneak up and wedge their shells open with a wooden block to do my work. I suspected that after exposure to frequent feedings and water changes by aquarists, the clam had “learned” that there was no reason to expend energy closing its shell. Meanwhile, in the process of proving that our sampling technique was not harmful to the animal, I discovered that clams which detected my shadow would quickly reopen within seconds when I hid from them, while those that were stuck by a syringe would stay closed for minutes before opening and beginning to feed again. Makes sense!

Other researchers noticed this phenomenon as well. One group found that giant clams repeatedly exposed to shadows of different sizes, shell tapping and even directly touching its soft tissue began to habituate (become accustomed) to the stress, opening more quickly and staying open longer each time the stimulus occurred. Even more interestingly, they did not transfer that habituation between stress types; for example, the clams that saw a shadow again and again would still react strongly to a different stress like tapping its shell. This suggests the animal can distinguish between different threats along a spectrum of seriousness, with touching of tissue (similar to a fish pecking at its flesh) being the most serious threat with the most dramatic response.

Another study determined that larger giant clams stayed closed longer than smaller ones in response to the same threat. They proposed this was related to the greater risk large clams face as they have more tissue area vulnerable to attack. While the clams might not have made a “conscious” decision in the way we do as thinking creatures, they were able to place their individual risk in context and vary their response. This ability to tailor a response to different risk levels is a sign of surprisingly complex neurology at work.

Inside the Scallop
Close up of the eyes of a scallop. Each is a tiny crystalline parabolic mirror (photo by Matthew Krummins on Wikipedia)

Scallops show some of the most complex bivalve behaviors. This relates back to their unique adaptations, including simple eyes that can resolve shapes and the ability to swim away from danger. Scallops have been found to discern between predator types by sight alone, to the extent that they did not initially recognize an invasive new predatory seastar as a threat. When swimming, they are capable of using this vision to navigate to places where they can hide, such as seagrass beds. It would be very interesting to compare the behavior of scallops in marine protected areas to those that can be freely harvested. Do they vary their behavior in response?

I hope I’ve made clear that while clams are not exactly intellectual powerhouses, their behavior is much more complicated than simply sucking up water and opening or closing their shells. Like us, they inhabit a complex environment that requires a multitude of responses. Their nervous systems have evolved to allow them to survive and adopt nuanced behaviors which they can vary on the fly, and which us “higher” animals are only just beginning to comprehend.

How does a scallop swim?

uelx7yhbixf01
Scallops spooked by divers’ lights and fleeing en masse to filter somewhere else

The ocean is a place of constant dynamic movement. Fish use their fins to push water away from themselves, and because every action has an equal and opposite reaction, they therefore move forward. Some cephalopods use jet propulsion, constricting their mantle cavity to push water out through siphons, allowing them to jet forward like a deflating balloon. And other life forms sail the seas on constantly moving currents , indirectly harnessing the power of the sun and earth.

Bivalves are a fairly sedentary bunch by comparison. While most bivalves have a planktonic larval form, when they settle they are constrained to a fairly small area within which they can burrow or scramble around with their muscular feet.

graybountifulgopher-size_restricted

But some bivalves have evolved to move at a quicker rate. The most famous swimming bivalves are the scallops, which have evolved to use jet propulsion, similar to their very distantly related cephalopod relatives. But unlike the cephalopods, scallops evolved to use their hinged shells to aid this process!

wyjgzzw
Notice the expelled water disturbing the sediment below the scallop as it “claps” its way forward!

Many filter-feeding bivalves use their shell valves as a biological bellows to pull in water for the purposes of sucking in food, or even to aid in digging, but scallops have developed another use for this activity, to enable propulsion. Scallops draw in water by opening their valves to create a vacuum which draws in water to their sealed mantle cavity. They then rapidly close their valves using their strong adductor muscles to pull them together, which pushes the water back through vents in the rear hinge area, propelling the scallop forward.

esn6uyb
Don’t panic if a scallop swims toward you. They can see, but not super well. This one is just confused.

Using this strategy, scallops can evade predators and distribute themselves to new feeding sites. It’s a surprisingly effective swimming technique, with the queen scallop able to move 37 cm/second, or over five body lengths per second! Michael Phelps would have to swim at nearly 35 km/h to match that relative speed (his actual highest speed is around 1/3 of that). I’m sure sustaining that speed would be tiring for Mr. Phelps, though, and it’s the same for scallops, only using their swimming for short-distance swims.

(video from Supplemental Materials of Robertson et al. 2019)

A recent paper from a team in Switzerland just came out describing an effort to engineer a robot which imitates the scallop’s elegant and simple swimming method. The resulting totally adorable “RoboScallop” closely imitates the design of a scallop, using a pair of hinged valves with rear openings to allow the movement of water backward. The internal cavity is sealed by a rubber membrane draped across the front so that all water is forced through these rear vents when the Roboscallop snaps shut.

roboscallop.PNG
Diagram from the Roboscallop paper (from Robertson et al. 2019)

As seen in the diagram above, the rhythm and relative velocity of opening vs closing is important to make sure the RoboScallop actually moves forward. If the scallop opened as quickly as it closed, it would just rock back in forth. It instead opens slowly so that it does not draw itself backward at the same rate that it can push itself forward. The researchers had to do quite a bit of calibration to get these rates right (equating to about 1.4 “claps” per second), but once they did, they ended up with a RoboScallop that can generate about the same force of forward movement (1 Newton) as a real scallop (1.15 Newtons), and similar rates of speed.

This paper really fascinated me because it is merely the latest in a long line of successful engineering projects imitating the ingenuity of evolution. Other marine robots have been made which emulate the locomotion of fish, manta rays, sea snakes and other forms of swimming. And now we have a clam! Let me know when I can buy one to play with in my pool.

The clams that sail the seas on rafts of kelp

 

gtrap.jpg
The streamlined shells of Gaimardia trapesina. Source: New Zealand Mollusca
Bivalves are not known as champion migrators. While scallops can swim and many types of bivalves can burrow, most bivalves are primarily sessile (non-moving on the ocean bottom). So for many bivalves, the primary method they use to colonize new territories is to release planktotrophic (“plankton-eating”) larvae, which can be carried to new places by currents and feed on other plankton surrounding them. Many bivalves have broad distributions because of their ability to hitchhike on ocean currents when they are microscopic. They don’t even pack a lunch, instead eating whatever other plankton is around them. But once they settle to grow, they are typically fixed in place.

Not all bivalves have a planktotrophic larval stage, though. Larvae of lecithotrophic bivalve species (“yolk-eaters”) have yolk-filled eggs which provide them with a package of nutrition to help them along to adulthood. Others are brooders, meaning that rather than releasing eggs and sperm into the water column to fertilize externally, they instead internally develop the embryos of their young to release to the local area when they are more fully developed. This strategy has some benefits. Brooders invest more energy into the success of their offspring and therefore may exhibit a higher survival rate than other bivalves that release their young as plankton to be carried by the sea-winds. This is analogous to the benefits that K-strategist vertebrate animals like elephants have compared to r-strategist mice: each baby is more work, and more risky, but is more likely to survive to carry your genes to the next generation.

Brooding is particularly useful at high latitudes, where the supply of phytoplankton that is the staple food of most planktrophic bivalve larvae is seasonal and may limit their ability to survive in large numbers. But most of these brooding bivalves stay comparatively local compared to their planktonic brethren. Their gene flow is lower on average as a result, with greater diversity in genetic makeup between populations of different regions. And generally, their species ranges are more constricted as a result of their limited ability to distribute themselves.

gtrap2
A bunch of G. trapesina attached to kelp. Notice the hitchhiking clams have in turn had hitchhiking barnacles attach to them. Freeloaders on freeloaders! Source: Eleonora Puccinelli

But some brooding bivalves have developed a tool to have it all: they nurture their young and colonize new territories by sailing the seas using kelp rafts. The clam Gaimardia trapesina has evolved to attach itself to giant kelp using long, stringy, elastic byssal threads and a sticky foot which helps it hold on for dear life. The kelp floats with the help of gas-filled pneumatocysts, and grows in the surge zone where it often is ripped apart or dislodged by the waves to be carried away by the tides and currents. This means that if the clam can persist through that wave-tossed interval to make it into the current, it can be carried far away. Though they are brooders, they are distributed across a broad circumpolar swathe of the Southern Ocean through the help of their their rafting ability. They nurture their embryos on specialized filaments in their bodies and release them to coat the surfaces of their small floating kelp worlds. The Southern Ocean is continuously swirling around the pole due to the dominance of the Antarctic Circumpolar Current, which serves as a constant conveyor belt transporting G. trapesina across the southern seas. So while G. trapesina live packed in on small rafts, they can travel to faraway coastlines using this skill.

pic_w-msc-197185
The broad circumpolar distribution of G. trapesina. Source: Sealifebase

The biology of G. trapesina was described in greater detail in a recent paper from a team of South African researchers led by Dr. Eleonora Puccinelli, who found that the clams have evolved to not bite the hands (kelp blades?) that feed them. Tests of the isotopic composition of the clams’ tissue shows that most of their diet is made up of detritus (loose suspended particles of organic matter) rather than kelp. If the clams ate the kelp, they would be destroying their rafts, but they are gifted with a continuous supply of new food floating by as they sail from coast to coast across the Antarctic and South American shores. But they can’t be picky when they’re floating in the open sea, and instead eat whatever decaying matter they encounter.

shell-gaimardia-trapesina
Falkland Islands stamp featuring G. trapesina. Source.

The clams are small, around 1 cm in size, to reduce drag and allow for greater populations to share the same limited space of kelp. Their long, thin byssal threads regrow quickly if they are torn, which is a useful skill when their home is constantly being torn by waves and scavengers. Unlike other bivalves, their shells are thin and fragile and they do not really “clam up” their shells when handled. They prioritize most of their energy into reproduction and staying stuck to their rafts, and surrender to the predators that may eat them. There are many species that rely on G. trapesina as a food source at sea, particularly traveling seabirds, which descend to pick them off of kelp floating far from land. In that way, these sailing clams serve as an important piece of the food chain in the southernmost seas of our planet, providing an energy source for birds during their migrations to and from the shores of the Southern continents.

 

Weird Clam Profile: Pinna nobilis

8175041434_a8b6c7e573_o
A fan mussel among the seagrass it calls home (Arnaud Abadie on Flickr)

The fan mussels (Pinna nobilis) are a species of enormous mussel which live in seagrass beds of the Mediterranean Sea. They can grow to nearly 4 feet long (though most are 1-2 feet in size at maturity), and live with most of their bodies protruding straight up out of the sediment, anchored down into the sand with long rootlike byssal threads which grow out of their rear hinge.

muerte-masiva-nacra-pinna-nobilis1
They are really enormous (Marc Arenas Camps on WordPress)

These mussels grow up to 20 cm per year, almost entirely in the vertical direction. As they gain in mass, their bodies start to sink in the sand beneath them, so it is believed this extremely fast growth rate evolved in order to stay above the sediment. It also helps them to remain elevated above the seagrass around them, where they can access passing phytoplankton and organic particles in the current.

SANYO DIGITAL CAMERA
A sea silk glove (Wikipedia)

SANYO DIGITAL CAMERA
Close up view of the hairlike byssus. I definitely am feeling some beard envy here. (Wikipedia)

Because they are exposed to the current like a giant fan, they need a very strong anchor. So they create huge quantities of byssal threads which root them down in the sand. These byssal threads are known as as “sea silk” and communities around the Mediterranean have used the silk to sew clothing for thousands of years. The material is extremely fine but strong, and has historically been of immense value as a result. Sea silk or sea wool is mentioned in writings of the ancient Egyptians, Greeks and Romans.

Unfortunately, the fan mussels are considered critically endangered due to overharvesting, pollution, climate change and destruction of their native seagrass habitats. However, they are now protected and active conservation efforts are underway. When the cruise ship Costa Concordia ran aground off of Italy in 2012, a community of fan mussels were rescued from a seagrass bed next to the wreck and moved to another nearby site. I hope someday to study the fan mussels because I find them to be a truly charismatic bivalve with many interesting mysteries still waiting to be uncovered about their unique lifestyle.

IMGP2909
Huge pen shell I saw at the Hebrew University Museum in Jerusalem. My lens cap is only 6 cm to give you a sense of scale! The shells are fragile and easily break.

Killer Clams

machado.PNG
Some shells of the carnivorous genus Cardiomya. Notice the protuberance off one side, making space for the overdeveloped siphon they use to capture prey (Machado et al. 2016)

You might think of clams as rather pacifistic creatures. Most of them are; the majority of bivalves are filter-feeding organisms that suck in seawater and eat the yummy stuff being carried by the currents. This mostly means phytoplankton, tiny single-celled photosynthetic plankton which make up most of the biomass in the world’s oceans. Most bivalves could be considered exclusively herbivorous, but as I’ve learned happens throughout evolutionary biology, there are exceptions to every rule. We already talked about parasitic bivalves that have evolved to hitch a ride on other hapless marine animals. But there is an even more sinister lineage of bivalves waiting in the sediment: yes, I’m talking about killer clams.

siphon.PNG
View of the oversized siphon (Machado et al. 2016)

Carnivory in bivalves has evolved multiple times, but the majority of known carnivorous bivalves fall within an order called the Anomalodesmata. Within that order, two families of clams called the Poromyidae and Cuspariidae have a surprising number of species which are known to eat multicellular prey.

Screenshot_2018-07-22 Clams.png
Evil clams are also the star of my favorite Spongebob episode

Now, you can rest easy because there are no clams that eat people. You’re safe from the Class Bivalvia, as far as we know. But if you were a small crustacean like a copepod, isopod or ostracod, you would be quite concerned about the possibility of being eaten by a poromyid clam in certain regions of the world. These clams lie in wait in the sediment like a sarlacc, with sensory tentacles feeling for passing prey and a large, overdeveloped siphon ready to suck up or engulf their helpless targets.

morton.PNG
Until we catch the feeding behavior of poromyids on video, these whimsical artist’s depictions will have to do (Morton 1981).

Because they spend their lives under the sediment, these clams aren’t very well studied, and the first video of them alive was only taken in recent years. In addition, many of these killer clams live in deeper water, where their murderous lifestyle provides an advantage because food supplies can be much more sparse than in the sun-drenched shallow coastal zone. Much like the venus flytrap and carnivorous plants have arisen in response to the low nutrient supply of boggy swamp environments, the ability to eat alternative prey is valuable to the killer clams in all sorts of unconventional environments.

The siphon which these clams use to suck up their prey is a repurposed organ. In most other bivalves, the siphon is usually a snorkel-like organ which enables the clam to safely remain buried deep in the sediment and still breathe in oxgyen and food-rich water from open water above. But for the poromyids, the siphon is instead a weapon which can be used like a vaccum cleaner hose, or even be enlarged to engulf hapless prey. The poromyids have also evolved to have a much more complex, muscular stomach than any other bivalves. It takes a lot more energy to digest multicellular food, while most other bivalves simply just feed from the single-celled food they catch on their gills, expelling the other un-needed junk as “pseudofeces.”

dilemma.PNG
Dilemma, another strange carnivorous bivalve which eats marine isopods (pill bugs), found from deep waters off the the Florida Keys, Vanuatu and New Zealand (Leal 2008)

Hopefully soon we will have video of this predatory activity in action. But until then, you can imagine that somewhere on earth, tiny copepods foraging on the surface of the sediment pass by a strange field of squishy tentacles. Suddenly, out of nowhere a hellish giant vacuum hose appears in view and sucks them in like Jonah and the whale. Then it’s just darkness and stomach acid. What a way to go!

lyonsiella.PNG
Lyonsiella going after a doomed copepod (Morton 1984).

Weird Clam Profile: Hammer Oysters

naturalis_biodiversity_center_-_zma-moll-1264_-_malleus_malleus_28linnaeus2c_175829_-_malleidae_-_mollusc_shell
Malleus malleus from Indonesia. Source: Wikipedia

Oyster. Reading that word, you probably formed an image in your mind of a rough-shelled creature with a shiny mother-of-pearl (nacreous) inside that someone pulled out of some silt in an estuary. And yes, that’s what most oysters look like. Some oysters are of additional economic value through their creation of pearls. These pearl oysters have long, straight hinge lines and live in the tropics in and around coral reefs.

4880314958_03e3a2b85c_o
A pearl oyster. See the straight hinge? Source: Pearl Paradise on Flickr

The hammer oysters are another sort of oyster, not of the Ostreidae family that includes most of the bivalves we think of as oysters, but still closely related and in its own family, the Malleidae. Malleus is the latin word for hammer, and the most distinctive genus of hammer oysters indeed look just like a hammer sitting on the seafloor.

73494_orig
In a typical life position in a seagrass bed. Notice all the algae, anemones and other encrusting creatures freeloading off the hammer oyster’s hard work. Source: Ria Tan on EOL

What the…that thing’s alive? How does that even work? This is an oyster? That’s how I imagine the first scientist to discover the hammer oyster reacting. Because they are weird and rather incomprehensible-looking. But when you know the way they live, it makes more sense.

maleus_albus
There is a small area of nacre (mother of pearl) in the area near the rear of the interior. Source: Archerd Shell Collection

The hammerhead part of the oyster is just a super elongated hinge. The creature has a long, straight hinge like other oysters, but it has evolved to instead have a relatively narrow set of valves attached to that ridiculously overbuilt hinge. Like other oysters, they secrete byssal threads from their backside to attach themselves to the bottom. The narrow valves commonly poke up out of sandy bottoms in tropical waters nearby coral reefs. They do particularly well in seagrass beds, and often live in large colonies similar to other oysters.

hammer-oyster-with-natural-attachment-seashell
Shell collectors seek out hammer oyster shells which have other bivalves attached. Here is a thorny oyster living on top of Malleus. Two for one! Source

The absurd hinge helps these creatures to stay anchored into the sediment, but also serves as “wings” that help it avoid sinking into the sediment over time. One thing us humans don’t realize sitting on sand is that it actually acts like a liquid. Over time, if we sat on wet sand, we would likely begin to sink in unless we spread out our arms and legs to increase our surface area. In the ocean, all sand is quicksand. Different organisms have different strategies to avoid being engulfed by the sediment they live on, and the hammer oyster has had good success with its strategy. It doesn’t care that you think it looks weird. It just sits there, filtering water for passing food particles and plankton. It’s very good at it, has been perfecting the strategy for over 250 million years, and doesn’t need your smartass remarks, thank you very much.

original
Another shot of a happy hammer oyster doing what it does best, in a seagrass bed near Singapore. Source: Wild Singapore on iNaturalist