Screencap of Onion where some sort of scientist is announcing something in front of a Powerpoint slide of a clam
Last week, The Onion, a very serious journalistic publication, published a piece “Biologists Announce There Absolutely Nothing We Can Learn From Clams“. As a print subscriber I want to say I played a small part in this article, which I’ve actually hung on my office wall. But I want to take it a step further and write a line-by-line concurrence with everything they wrote!
WOODS HOLE, MA—Saying they saw no conceivable reason to bother with the bivalve mollusks, biologists at the Woods Hole Oceanographic Institution announced Thursday that there was absolutely nothing to be learned from clams.
Wow, I do know a researcher who studies clams at Woods Hole and actually love her work! Nina Whitney is now a prof at Western Washington University but until recently was a postdoc at WHOI studying how shells can serve as records of climate! I wonder who The Onion interviewed.
“Our studies have found that while some of their shells look pretty cool, clams really don’t have anything to teach us,” said the organization’s chief scientist, Francis Dawkins, clarifying that it wasn’t simply the case that researchers had already learned everything they could from clams, but rather that there had never been anything to learn from them and never would be.
Oh I don’t know a Francis Dawkins, but I’m sure they know their clams! It is true that their shells can look pretty cool. Bivalves include everything from Hysteroconcha dione, with its beautiful color and spines, to Tridacna gigas, which grows to 4.5 feet and weighs hundreds of pounds! And like an Onion, shells have growth layers, sometimes a new one every day, which someone could use to try to figure out how clams record what they eat and how the environment changes. But why would anyone do that?
Close-up view of a Hysteroconcha bivalve shell, showcasing its intricate ridges and coloration, and rows of long spines near the margin. Source
For me, I guess I haven’t learned anything from clams. I think I already knew in my heart that clams can live for >500 years. I already knew that mussels can filter several liters of water per hour, meaning that a colony of them can filter thousands of liters an hour. All this stuff is obvious, actually. Common sense.
“We certainly can’t teach them anything. It’s not like you can train them to run through a maze the way you would with mice. We’ve tried, and they pretty much just lie there.
It is ludicrous that clams could be taught anything or have anything approaching memory or thinking. It is only coincidence that scallops appear to clap their valves to swim, using their hundreds of eyes to navigate to a new location away from predators or toward food. It’s coincidence that they increase their feeding activity when shown a video of food particles. Some researchers have even claimed that giant clams can tell the difference between different shapes of objects! It is so dumb!
From what I’ve observed, they have a lot more in common with rocks than they do with us. They’re technically alive, I guess, if you want to call that living.
Also literally true! Their shell is a biomineral, in essence a living rock, made of calcium carbonate. They are alive in the sense they have a heart that beats, pushing hemolymph around their body. Their heart rate can increase or decrease with different stressors. Remember though, we always knew this. We didn’t learn it through something like science.
They open and close sometimes, but, I mean, so does a wallet. If you’ve used a wallet, you know more or less all there is to know about clams. Pretty boring.”
I myself have wasted time studying this. I attached sensors to giant clams to monitor their feeding activity. If I had learned anything, it might have been that they change their behavior between day and night, basking in the sun to help their photosynthetic algae in the day, and partially closing at night, with those behaviors changing based on how much chlorophyll is in the water. But remember! I didn’t learn it.
The finding follows a study conducted by marine biologists last summer that concluded clams don’t have much flavor, either, tasting pretty much the same as everything else on a fried seafood platter.
I can’t see how anyone would like to eat a bivalve. Especially not a fresh-caught scallop sauteed in butter or a plate of fried clams in New England. Never try that. Leave it to me!
Source: CDWR on Facebook. I thought about titling this post “Violence of the Clams” until I realized American Dad beat me to it, releasing an episode with that title in 2024
I legitimately admire clams. I whole-gilledly believe that they do a lot of good for the world; way more than we do! But there’s no doubt that some types of clams are up to no good, thanks to our help. One of those species is Limnoperna fortunei, the golden mussel. In late 2024, this species was observed for the first time on the North American continent, found attached to various human infrastructure in the Sacramento Delta of California. Since then, it has made its way down the California aqueduct all the way to the Southern tip of the Central Valley. Golden mussels are a notorious invasive species, and California officials immediately recognized the potential for disaster here, leading to dramatic policies of containment throughout the state that have tremendously impacted the lives of people trying to enjoy life on the water.
Map from CDFW showing the locations golden mussels have been observed as of July 2025
Since we are in uncharted waters with these mussels, there are a lot of questions about these innocuous-looking but trouble-making clams. In this blog, I will try to answer some of the most frequent questions I’ve seen over the last few weeks. I will caveat this by saying that I currently have no active research on this species, but I am a card-carrying clam scientist, and have a lot of interest in its biology and the significance its presence it will have for our state. So let’s get into it!
What are golden mussels? Where are they originally from? How did they get here?
A clump of golden mussels observed in Brazil by iNaturalist user danialdias
Golden mussels are small mussels, only reaching a bit over an inch in length, native to the Pearl River basin in China (the area around Hong Kong and Macau), but have been spread around the world over recent decades with the help of humans, hitching a ride between continents in the ballast water of our ships. Once settled in a new place, they easily move between lakes attached to boats being driven around, since they can live up to ten days out of water (talk about holding their breath!). The mussels first spread throughout Southeast Asia, then to Japan, then South America, and now for the first time, to the North American continent. While they are true mussels, in the same family (Mytilidae) as the more famous saltwater mussels you might have seen in tide pools, they can’t tolerate fully marine conditions.
Why are they a problem?
A now-infamous photo of the mussels coating the inside of a pipe at the Governor Jose Richa Power Plant in Brazil
They love to attach to heat exhangers, which can cause dams and pump stations to break down. Both are crucial to the California Aqueduct. Photo by Gustavo Darrigan
They can attach to native mollusks, smothering them. Photo by Gustavo Darrigan
Golden mussels are prolific breeders and make a living by anchoring themselves to any available hard surface using byssal threads. This is relatively uncommon among freshwater bivalves, most of which live on the bottom and don’t attach to surfaces. Golden mussels reproduce by releasing thousands of tiny larvae which spread through the area on river currents. In areas where they attach (such as dams, aqueducts, boats and other infrastructure), they form dense colonies that gum up the works, clogging pipes and and coating surfaces with thousands of their sharp little shells. They can even attach to the roots of native plants and shells of other molluscs and smother them! This causes hundreds of millions of dollars in damages and continuing expense in reservoirs and irrigation systems where they’ve taken hold, like in Japan and South America. If the mussels were to unexpectedly clog the outlet of a Californian reservoir like Lake Berryessa or Folsom Lake, it could be disastrous for people who depend on that water.
Figures from a paper about golden mussels invading Brazil, showing them coating an aquaculture cage, on a buoy, on a power plant hatch, in the entry to a dam turbine, and clogging a cooling pipe
Quagga and zebra mussels, originally from Central Asia, are invaders in the Colorado River, the Great Lakes, and reservoirs in Southern California. They have been limited from spreading into most reservoirs in Northern California by the low calcium content of lakes here (a function of our local rocks and geology). But golden mussels have lower calcium requirements than zebras/quaggas, so it is likely that they can reproduce in reservoirs up here. They are also surprisingly resistant to low temperatures, meaning that they could potentially take hold in high-altitude lakes like Lake Tahoe, which could be a disaster for efforts to keep Tahoe blue.
Why are they so successful?
A growing golden mussel colony, with an adult surrounded by younger babies. They only live about 3 years, but what a life they’ll live! Photo by Alexander Karatayev via Great Lakes Echo.
Being so prolific in their numbers allows the mussels to transform the chemistry and biology of the waters where they live. Like most bivalves, golden mussels make their living by using their gills to filter particles out of the water column, drawing them down to their mouth to eat. While individual golden mussels are pretty average in their filtering ability, together they work to much more effectively clear the water than other species, thereby depriving those native species of the plankton food they need, and potentially even directly eating the plankton larvae of other animals around them!
Figure showing how densities and size of colonies of toxic cyanobacteria Microcystis increase in the presence of golden mussels. Yum! Source
The Sacramento Delta has plenty of plankton floating around, so it’s not surprising they’ve decided this is a nice place to live. But while the water-cleaning ability of clams is a useful service they provide, there can definitely be too much of a good thing. The mussels are “ecosystem engineers”, meaning that they make the environment they want to live in. The problem is that what is good living for the mussels is not necessarily the habitat of a thriving Delta. Where they take hold, they exclude native species and generally decrease water quality by trapping dirt and boosting the populations of cyanobacteria. The Sacramento Delta already struggles with toxic cyanobacteria, and don’t need to have the problem be worse! Lower water quality means fewer fish, which is bad for people and the ecosystem.
Why have they shown up now?
A handful of Corbicula fluminea (Asian clams), a different species of invasive clams in the CA Delta. Photo source
This is actually not the CA Bay/Delta’s first rodeo with foreign clams. Invasions of Asian clams (Corbiculafluminea) and overbite clams (Potamocorbulaamurensis) in the 1980s transformed the Bay, with trillions of clams spreading out all the way south towards San Jose and eastward into the Delta after being introduced in Grizzly Bay in the mid-1980s. These clams had enormous impacts on the ecosystem, excluding other bottom-dwelling animals and eating most of the plankton food that other animals rely on. They are thought to have played a major role in the decline of some native fishes like Delta and longfin smelt.
Golden mussels have been making their way around the world over the decades. It is hard for their larvae to survive a couple weeks in the belly of a ship, be released, and successfully take hold, but with enough ships coming to California, it was only a matter of time before all of the stars aligned and a population took hold. We don’t know if the appearance of golden mussels will push out Asian clams, or if they’ll coexist. Asian clams live on the bottom rather than attaching to stuff, but golden mussels may still compete with them for food.
Are there other ways they spread?
Previous studies investigating their spread in South America and Japan determined that virtually all of their spread happens attached to the hulls of ships, in ballast water, or anywhere their larvae can travel downstream. There are rare cases where they are believed to travel upstream in the guts of fish that eat them, being pooped out alive. But those are unusual cases. That also won’t help them spread past dams without a fish ladder. The planktonic larvae have very little ability to swim against the current, so they won’t be able to swim upstream through dam turbines.
A map and timeline of their spread through Japan. Source
A map of their appearances and spread through South America. Source
Unlike pea clams, which are famous for attaching to birds by clamping their shells on their feet or feathers and traveling long distances to reach new places, it is not believed that golden mussels can create their thread attachment fast enough to hitch a ride on birds (which is a process that takes hours). So fortunately, I can assure our avian friends that we won’t need to inspect them before they use our reservoirs. At the end of the day, human vessels are the main way these mussels are getting around to far-flung places. In Japan, it took around 15 years to spread river to river through the country, while in South America, it covered most of a large area from Buenos Aires to Southern Brazil in that same period of time, which was proposed to be largely due to greater boat traffic in South American rivers.
Different life stages of larval golden mussels. They’re cute when they’re babies! The bottom right is the “plantigrade” stage when they attach to a boat, at 0.75 mm size. Imagine scanning a boat looking for one of those!
Are they good eatin’?
They don’t look exactly appetizing to me. Notice the visible byssal threads! Source: Folsom Lake Recreation Area
These mussels weigh only a little over an inch at best, with not much meat on them. Unlike Asian clams (Corbicula), which are eaten in some Asian cultures, I can’t find mention of anyone eating golden mussels. There have been attempts using them as a fertilizer calcium supplement, but that needs more research. Additionally, it’s known that the other invasive clams of the Bay/Delta are concentrators of toxins, including selenium from farm runoff, heavy metals, and also toxins from harmful algae. In places where golden mussels colonize, toxic cyanobacteria can proliferate, so they actually make themselves a bit more toxic than other clams in the same place would be!
I don’t think these will be taking over the tapas restaurants any time soon! Source
What can we do about them?
We just don’t know how L. fortunei will fare long term in the California Delta and lakes. The previous clam invasions have waxed and waned through time. It’s uncertain whether these mussels will fizzle out, as sometimes happens for invasive species, or if they’re here for the long haul. The speed of their spread throughout the state personally leads me to suspect they’re here for good. And in the meantime, the invasion has caused huge issues for anglers, boaters and dam operators throughout California this summer, who have had to institute boat inspections at every reservoir in the state. Boats have to be painstakingly checked for mussels stuck to surfaces on the hulls.
Eventually, it is possible that mussels will find their way through, despite these precautions. Some could be missed in the crevices of boats entering various reservoirs. But hopefully that will buy time for dam operators to put forth the needed upgrades and develop procedures to keep them from fouling dams and aqueducts. At that point, the objective becomes mitigation rather than prevention. It won’t be cheap, usually involving manual scraping of mussels off of surfaces, application of hot water, pesticides, and use of surfaces that discourage mussel growth.
Map from a 2015 book chapter showing their distribution at that time on top, and predicted places they could invade on the bottom panel. Just as the prophecy foretold! Source
Long-term, our invasive species management needs to be more proactive rather than reactive. California was previously recognized to be in the range of territory where golden mussels could appear (see figure above). We can’t allow future invasions to catch us by surprise. To that end, there are laws on the books in California requiring inspection of 25% of incoming ships. So far, we are only inspecting a small fraction of that number. Additionally, ships were previously required to release ballast water far offshore in the ocean, where freshwater species wouldn’t be able to get a foothold. That policy was also not adequately enforced, and requirements to sterilize ballast water with chemical treatments were ruled too expensive. The state government very recently strengthened the standards, but gave ships until 2030 to comply with a weakened version of the rules, and pushed off compliance with the final strongest version until 2040!
People frustrated about such invasive species in California should insist to their policymakers that we can and must do better. There are manymoreinvasiveclam species waiting for their chance at a ride over here to make a living in our waters. It’s not too late to stop the assembly line of species coming to displace the native creatures we all love and value!
I often get asked what pearls are and why bivalves make them. Pearls are biogenic gemstones. This means they are valuable rocks made not by inorganic crystallization within the earth, like most gemstones, but instead are produced by life! Interestingly, they are living rocks, composed of true minerals. When I talk about minerals, I mean a solid substance with a known chemical composition and crystal structure.
Pearls are specifically made mostly of a mineral called aragonite. Aragonite is a mineral made of atoms of calcium bound to an ion called carbonate. There are other minerals made from calcium carbonate, like calcite and vaterite. I’ll save those for another blog, and while those are present in small amounts in some pearls, the vast majority of the material is aragonite. The clam uses calcium carbonate to make pearls because it’s a conveniently available material: it’s also what they build their shells from!
Aragonite has a very specific geometric crystal structure at the molecular level, but zooming out slightly, it can be found in a tremendous variety of microfabrics. Like the fabric of our clothes, the shell is essentially “woven” by the bivalve with a certain texture at the cellular level. There are hundreds of types of fabrics, ranging from structures looking kind of like brickwork, to plywood, to actual long fibers of carbonate. But the most valuable pearls are made of a form of aragonite called nacre, which is also called “mother of pearl” for this reason.
The platy microstructure of nacre. See how the tablets are organized into interlocking columns! Source: Wikipedia
Nacre is a very special biomineral for many reasons. To humans, it’s precious because of its beautiful, complex iridescence and luster, which has attracted our eyes for thousands of years. But most clams aren’t making the material for its luster- they value its microfabric. Nacre is made of billions of tiny flattened tablets of aragonite, arranged in tall interlocking stacks. Each aragonite tablet also has little bridges joining it to the neighboring tablet, meaning they don’t easily slide out of place. The plated structure also aids the shell in staying together. Even when fractured, the shell can stay together as plates slide to lock into another shape!
Reviewing the various strengthening aspects of nacre, including the bridges that lock tablets together, the rough surfaces of the tablets that grip against each other, the organics that glue together tablets like mortar, and the tablets sliding into new locking orientations even if they break apart! From Zhao et al., 2018
Between the bricks of aragonite are a kind of mortar or scaffolding of protein, binding them all together. This protein scaffolding is extremely important to the overall material. Like the steel rebar in concrete, it strengthens the material, making it less brittle and therefore able to resist forces that might crush the clam’s shell, while still allowing for the material to be very thin. For us humans, those alternating layers of carbonate and protein act like thousands of layers of prisms, refracting the light into thousands of colors depending on the angle it is looked at, meaning that any light becomes a miniature rainbow when it passes through the structure of the nacre.
A snuff box made from a nacreous bivalve shell, at the Vienna Natural History Museum
This structure makes nacre a “premium” material for clams to build their shells from. It costs much more energy for a clam to make such an orderly microstructure and fill it with so much protein, up to 5% by weight, which is around 5-50 times how much organic material is found in more common forms of aragonite. Nacre is also more vulnerable to dissolving in the water surrounding the clam. For this reason, clams usually will only use nacre in the internal shell layer, isolated from the surrounding waters, using cheaper materials on the outside of the shell, or at least a protective sheath of protein on top (called periostracum).
The nacre is present in mussels, oysters and other bivalves vulnerable to crushing pressures of waves as well as crushing predators like fish and birds. Nacre is like the bulletproof vest a clam uses to give itself a bit more powerful armor. Because pearls are made inside the shell, that’s why the most valuable pearls to us are made by oysters with a nacreous inner shell layer. The tropical pearl oysters (genus Pinctada) make some of the most valuable pearls, because it’s particularly rich in organic material and thus has a bright and complex lustre. Pearl oysters have extremely thin shells, which are strengthened by having a nacreous structure.
Why do bivalves make pearls? Pearls are essentially part of the bivalve’s immune system. If a piece of sand or debris got under your skin, your body would encase the intrusive object with scar tissue. Bivalves can do better than that, because they use the material of the shell to wrap around the object. Anything can be an intrusive object- a piece of sand, an infection, or even a parasite. For example, pearlfish are parasitic fish specialized to live inside the shells of clams. If they die in the shell, the clam will dutifully set to work encasing the fish in nacre, like Han Solo in carbonite!
A pearl oyster with a pearlfish wrapped in nacre against the inner shell. From the Natural History Museum London collection
Most natural pearls are irregularly shaped, so cultured pearls often use round beads as the nucleus for the oyster to grow nacre around. The farmer wedges the oyster’s shell open, deposits the bead and leaves it for a period of time to allow the bivalve to deposit nacre. At harvest time, the oyster can be shucked to remove the pearl. Some experimental approaches even anaesthetize the oyster to remove the pearl, replace it with a new nucleus and repeat the process, potentially allowing for greater efficiency and humane harvesting, allowing the oyster stock to live for years!
So next time you see a pearl, you can understand that the craftsmanship of these wondrous objects is the result of millions of years of evolution, combined with thousands of years of human ingenuity. Moving forward, researchers are attempting to learn to imitate the structure and methods that clams use to make pearls, which could lead to all sorts of improvements in materials science! Clams again prove their skill in engineering. They have a 500 million year head start against us, but we can always learn!
Two giant clams near Eilat in the Northern Red Sea. To the left is the small giant clam, Tridacna maxima, and to the right is a mature individual of the rare endemic giant clam Tridacna squamosina, only found in the Northern Red Sea.
You are what you eat, and clams are too. We’re made of atoms, which come in “flavors” called isotopes, relating back to the mass of the atoms themselves (how many protons and neutrons they have). Nitrogen, for example, comes in two stable (non-radioactive) forms called nitrogen-14 and nitrogen-15. Much like scientists can track the composition of a person’s diet from the isotopes of their hair, researchers have used the isotopes of clams to figure out their diet.
Nitrogen isotopes provide us with a useful and detailed record of food webs. Plants and algae tend to have more of the light isotope of nitrogen in their tissues than the animals that eat them (primary consumers), and the animals that eat those animals have even higher nitrogen isotope values. We can measure the amount of “heavy” atoms of nitrogen with a unit called δ¹⁵N (“delta 15 N”). A carnivore at the top of the food chain will have a very high δ¹⁵N, while plants will be the lowest. Clams, typically being filter feeders, will usually have an intermediate value, since they’re eating a lot of phytoplankton (tiny microscopic floating algae) and zooplankton (animal plankton that eat other plankton).
But I study a special kind of clam, the giant clams, which have a cheat code enabling them to become giant: they have algae *inside* of their bodies. The algae make food using photosynthesis and share it with their hosts! In exchange, the clams provide the algae with a stable environment free of predators, plenty of fertilizer in the form of their own waste, and even channel extra light to help the symbionts grow faster. This partnership is called photosymbiosis, and is pretty rare in clams, though it is common in other animals like the corals that build the reefs where giant clams are found! Previous researchers have shown that giant clams have very low nitrogen isotopic values in their tissue, like a plant, because they get most of their nutrition from the algae, rather than filter feeding.
I am a sclerochronologist. That means I study the hard parts of animals, in this case the shells of bivalves. Like the rings of tree, bivalves make growth lines in their shells which can serve as a diary of their lives. Some of my past work has looked at using chemistry of the growth lines of giant clams to measure the temperatures they grow at, compare the growth of ancient and modern clams, and even look at how much the clams grow in a day! Today though, I’m talking about my most recent paper, which looks at how we can use the shells of giant clams as a food diary.
But when they’re babies, the symbiosis in giant clams is not yet fully developed. During this early period of their lives, giant clams actually get more of their nutrition from filter-feeding like a “normal” non-photosymbiotic clam, until they’ve had a chance to grow in surface area and become a living solar panel. Like all bivalves, the shells of giant clams are made of calcium carbonate, bound together by a protein scaffold we call the shell organic matrix. Proteins are made of amino acids, which contain nitrogen! If we can get the nitrogen out of the shell from the early part of the clam’s life, and compare it to the nitrogen at the end of the clam’s life, it might record the clam’s transition from filter feeding to its mature plant-like lifestyle! If our hypothesis holds, we should record a decrease through its life in the shell δ¹⁵N values.
A model I made of the clams’ nitrogen intake, with the left plot how they switch from filter feeding to getting most of their nitrogen from dissolved sources around 5-6 years of age. Because the nitrogen isotopes of those two sources are different, that manifests in the expected values from the clam’s body (the right plot)!
A map made by my talented partner, Dana Shultz!
So I gathered a team of talented collaborators and set out to test that hypothesis, using giant clam shells that I was able to get on loan from the Hebrew University of Jerusalem Museum. These shells had been confiscated from poachers at the Egypt-Israel border. While I would have rather known these clams were still alive in the waters of the Northern Red Sea, being able to use them for research to understand the biology of their species was the next best thing! I had originally planned on pursuing a postdoc undertaking this project with Rowan Martindale, a professor at UT Austin who has studied the nitrogen isotopes of photosymbiotic corals, but when I started up at Biosphere 2, we ended up continuing with the project anyway as a collaboration! We measured the nitrogen isotopes of the shell material in the lab of Christopher Junium, a professor at Syracuse University, who has developed an exquisitely sensitive method to measure the nitrogen from shell material by essentially burning the shell powder and then scrubbing out unwanted material to isolate the nitrogen, to measure the isotopes in a machine called a mass spectrometer. Katelyn Gray is a specialist in isotopes of biominerals and assisted with drilling out powder from the shells with a Dremel. Shibajyoti Das, now at NOAA, is a specialist in measuring the shell nitrogen isotopes of other bivalves and he was master at doing much of the mass spectrometer work, and assisting in interpretation. Adina Paytan is a professor at UC Santa Cruz. She first provided the funding and support for me to go to the Gulf of Aqaba and collect these shells as part of an NSF-funded student research expedition! She also provided environmental data which helped us to interpret what the clams were actually eating!
A figure showing the four shells we sampled from, with the sampling areas in each hinge area showing colored and matching with the corresponding isotope plot to the right (colored points). 3 of the 4 shells show declines in isotope values with age. Shaded ribbon behind the data shows the model output.
So what did our crack team of scientists find out? We found that three of the four tested giant clams did indeed measure a decline in nitrogen isotopes over the course of their lives. Their earliest growth lines in the hinge areas of their shells record elevated δ¹⁵N values similar to other filter-feeders from the region. But as they aged, their later growth lines show much lower δ¹⁵N values, more like photosymbiotic corals and plants from the region. So clams indeed recorded the transition in nutrition as they became solar-powered! This degree and directionality of change in nitrogen isotopes was much greater than has been observed in any other clams measured in this way, which made sense considering their unique physiology. The clams have another area of the shell, the outer shell layer, which is closer to the symbionts than the hinge area. In this outer shell area, we did not observe much of a consistent trend in nitrogen isotopes. It’s likely that the outer layer is highly influenced by the photosymbionts even at the earliest stages of life.
Growth lines in the hinge area of two of the shells lit from behind, with the drilled areas for this study visible as well. The outer shell layer is the opaque and was also sampled for this study.
There was one clam that differed from the others in showing low δ¹⁵N values through life in its hinge shell layer. To help explain these differences, I created an independent model of the clams’ internal chemistry based on their growth rate, which slows as they age, and also is faster in the summer. When the clams are young filter feeders, they get most of their nitrogen from plankton, debris and other material floating in the water column making up floating material we call Particulate Organic Matter (POM). Meanwhile, when they are in their photosynthetic life stage, they get most of their nitrogen from nitrate, which is essentially Miracle Gro for the symbionts. The model showed that the clams should record a flip from filter feeding to photosynthesis around 4-5 years of age, which was confirmed by three of the shells! But what about the one that didn’t show this trend? My colleague Adina had fortunately measured the isotopes of POM and nitrate in different seasons in the Gulf of Aqaba. We found that in summer, as expected, POM δ¹⁵N is lower than nitrate. In the winter, meanwhile, that relationship is flipped! So if a clam grew more in winter, it would not record the same transition as was seen by the other clams. We think the clam that was the exception to the rule might have been more of a winter grower.
The chaotic nutrient environment of the Northern Red Sea, showing how in different seasons, dissolved nitrate has higher or lower δ¹⁵N values than the Particulate Organic Matter that the clams filter-feed on.
But long story short, we were able to demonstrate for the first time that giant clams show nitrogen isotopic values in their shells in line with expectations from their diet. Other clams have been measured this way, but the fact that we were able to conduct these analyses at all is a testament to the sensitivity of the elemental analyzer in Chris’s lab. Giant clams have *very* low concentrations of organic matter in their shells, so the forward march of technology was a major factor enabling this study to be possible.
Why does it matter that we can measure the transition of the clams from filter-feeding to photosymbiotic in their shell records? Well, giant clams are not the only bivalves which have photosymbionts. There are other clams in the fossil record which have been proposed to have had symbioses with algae, but until now we’ve never had a definitive geochemical way to measure this in fossils. We hope that this approach can be applied to the organic material in fossil shells, which is often well preserved, to see if huge clams in the Cretaceous and Jurassic had a similar way of life to the modern giant clams! If we can demonstrate that was the case, we can see how such species responded to past intervals of climate change, which will help us understand how giant clams will fare in the warming, acidifying ocean of the present.
These results also help explain the lives of giant clams themselves. We hope this kind of data can be used to measure the symbiotic development of giant clams in different places, with different types of food and nitrogen available, where we’d have the potential to measure pollution. Interestingly, the time that the model shows the clams transitioning to photosynthetic maturity is right around the time that they reach reproductive maturity (5-10 years of age). We’d like to investigate whether the time of clam maturity is controlled by the development of their symbiosis, which itself might relate to nutrients in the clams’ environment. If clams can grow faster, then they can mature faster, and potentially reproduce sooner in life. Will giant clams be able to thrive in the presence of increased nitrate, which is a common pollutant in coral reef environments? Like all worthwhile research projects, we have dozens of new questions to pursue as a result of this work, so stay tuned for the next installment in this journey of clam knowledge!
Figure 1 from our paper, showing a comparison of a scallop, its growth increments and where it came from in France, to a giant clam shell section (dyed blue to show its growth lines), and where it came from in the Northern Red Sea
In 2020, I got an interesting email in my inbox from another mollusk researcher! Niels de Winter had emailed me, who I was familiar with from his past work on big Cretaceous rudist bivalves and giant snails. Niels had seen my paper published that year on giant clam shell isotopes from the Gulf of Aqaba in the Northern Red Sea, and was interested in teaming up on a new study to compare the daily growth of giant clams with another bivalve that has daily growth: scallops! I was intrigued because I had similar work underway to study the shells of clams I was growing at Biosphere 2, but I didn’t have any plans to measure my collected wild clam shells that way. So this sounded like a win-win opportunity to work together on a study that neither of us could do alone! Plus, I liked his work and had cited it in the past.
The shells of bivalves are very useful as each produces a shell diary consisting of growth lines, similar to the rings of a tree. Giant clams keep a very detailed diary, with a new growth line forming every night, which previous research has suggested was due to the control that the symbiotic algae inside giant clams have on their host. When the algae conduct photosynthesis, they use CO₂ in the fluid the clam makes its shell from, which increases the pH and accelerates the formation of the shell mineral crystals! The symbionts also directly assist by pumping calcium and other raw materials for the clam to use! Niels had found such daily lines in an ancient rudist bivalve from over 66 million years ago, and proposed it as a sign that the rudists might have had similar algae! I used the daily lines to compare giant clam growth before and after humans arrived in the Red Sea, finding that the clams are growing faster!
But it turns out that giant clams aren’t the only bivalves that make daily lines. Some species of scallops do it too, but that’s a bit confusing, since scallops have no symbionts that could be producing this daily growth period! One way we could investigate this is by bombarding the shells with very tiny laser beams only 20 µm across: the width of a hair is a flawed unit of measurement but 20 microns is as narrow as the narrowest type of hair you can think of! The laser would carry across the cross sections of the shell in a line, literally burning away tiny bits of shell, with the resulting gases captured by a machine called a mass spectrometer, which can figure out the concentrations of elements in the gas.
So we’d basically create a very detailed wiggly graph, where the wiggles represent years, months, days and even tides, depending on how fast the clams and scallops grew! I’m happy to report the paper was published earlier this year, so I thought I’d switch it up a bit and have a conversation with Niels through this blog post. Let me open it up to Niels, who I decided to bring in for this post in a kind of conversation!
Niels, what did you expect to find heading into this experiment? For me, I figured the giant clams would have greater amplitude of variation on a daily basis than the scallops, due to the influence of the symbionts. Is this what you expected? More or less. To be honest, that is what I was hoping to find, because if the daily lines were so much stronger in photosymbiotic shells than in the non-photosymbiotic scallops, it would make it easier to recognize photosymbiosis by studying modern and fossil shells. Also, a finding like that would obviously support the hypothesis we had about the ancient rudist bivalve. However, I was a bit skeptical as to whether the reality would be so clear-cut.
I mailed samples from six juvenile giant clams to Niels for analysis. We went with juveniles for a couple reasons: they grow faster at this life stage than they do as adults: 2-5 centimeters per year for the species we were studying, which meant the greatest opportunity to record a very detailed record from their shells! Scallops also grow extremely quickly, up to 5 cm/year, and so we would be able to get a similar resolution for both types of bivalves, since each page in their diaries would be a similar width.
When I start a new study like this, I always like to “outsource” the expertise about the topic a bit. Our work in sclerochronology often involves bringing together several fields of research and interpreting the results of complex measurements like these requires input from several people who look at them from different viewpoints. I had just finished a research stay at the University of Mainz in 2019, where I worked with Bernd Schöne and Lukas Fröhlich. I know Lukas was working on scallops together with Julien Thébault, whose team collects them alive in the Bay of Brest and keeps a very detailed record of the circumstances the scallops grow at. To carry out the laser measurements, I needed geochemistry experts, and Lennart de Nooijer, Wim Boer and Gert-Jan Reichart came to mind because I was already working with them on other topics and they run a very good lab for these analyses at the Royal Netherlands Institute for Sea Research (NIOZ). This is how the team came together.
Niels conducted a series of laser transects across the clam shells. He used some sophisticated time series analysis approaches to try to quantify the different periodic cycles that appeared in the clam and scallop growth. This was a different approach to how other workers have gone about finding daily growth cycles in giant clams and scallops, where they have often started by zooming in to find the wiggles, and work backwards from there. Niels instead tried to agnostically dissemble the growth records across each clam shell using mathematical approaches, based on the idea that this would be how future workers have to go about identifying daily growth patterns in fossil clams, where we often don’t have a real “growth model” up front to work with. By growth model, I mean the way that we convert the geochemical observations, which are arranged by distance along the shell, into units of time, which requires us to know how fast the clams grew. For the scallops, the age model was made by counting daily “striae” they form on the outside of their shells. For the giant clams, I helped with this by counting tiny growth lines inside the shell made visible by applying a dye called Mutvei’s solution. Because the growth lines weren’t visible all the way through the shell, I used a von Bertalanffy model to bridge across and create a continuous estimate of how old the clams were at each point along their shells.
Niels found some interesting results! I personally expected that the daily variation in giant clams would dwarf what was seen in the scallops, because of the impact of the daily activity of the symbionts. But it turned out that while the clams had a more regular pattern of daily shell growth than the scallops, likely controlled by the symbionts, that was still a minority of the variance across the clams’ records. Yet again, these clams destroyed my hypothesis, but in an interesting way!
Niels, what were your expectations going into this, and how did the results confirm or go against your hypotheses? What challenges did you run into in the course of your analysis, and how did you end up addressing those challenges?
This was honestly one of the most difficult shell-datasets I have worked with so far. The laser technique we used measures the elemental composition of the shells in very high detail, but while this is ideal for funding daily rhythms, it is both a blessing and a curse! In a dataset like this it becomes quite hard to separate the signal we are interested in from the noise that occurs due to measurement uncertainty. I ended up using a technique called spectral analysis, which is often used to detect rhythmic changes in successions of rocks. I guess this is where my geology background was helpful. With this technique, we were able to “filter out” the variability in the records of shell composition that happened at the scale of days and tides and remove the noise and the longer timescale variations. It turns out that, when you do this, you have to remove a surprisingly large fraction of the data, which shows us that the influence of the daily cycle on the composition of both the scallops and the clams is not very large (at most 20%). We did find a larger contribution in the giant clams, as expected, but the difference was much smaller than anticipated. I also find it interesting that most of the variability was not rhythmic. This shows that there are likely processes at play that control the composition of shells on a daily basis which we do not understand yet.
We were measuring a suite of different elements across both bivalve species, including strontium, magnesium, manganese and barium. All of these were reported relative to calcium, the dominant metal ion in the shell material (they’re made of calcium carbonate). This is why we call them “trace” elements; each is integrated into the material of the shell due to a variety of causes, including the temperature, the composition of the seawater, the growth rate of the clams, and also simply due to chance.
Examples of the time series of trace elements from a scallop shell (to the left) and giant clam (to the right), showing the very intricate wiggles in trace element values on a on a tidal and daily basis in each bivalve
In the giant clams, the elements that varied most on a daily basis were strontium and barium. Prior workers had found strontium was the strongest in terms of daily variation, but barium was more unexpected! Normally, barium is thought of as a record of the activity of plankton in the environment, and since there is very little plankton to be found in the Red Sea, it was not expected to see that element vary on a daily basis. It could be that barium gets included in the shell more as a function of the growth rate of the animals. Meanwhile, the scallops (from the Bay of Brest in France) were measuring strong tidal variability in barium and strontium, which makes sense because that location has huge tides compared to the Red Sea. Tides happen on periods of ~12.4 and 24.8 hours. The scallops showed swings lining up with both, and the tidal variability might be the main explanation for how scallops form daily lines. Because the lunar day is so close to a solar day, they would be hard to tell apart from each other! Interestingly, the giant clams also showed some sign of a ~12 hour cycle. While the Red Sea has pretty tiny tides, I had noticed that some of the clams make 2 growth lines a day, and if some clams in the shallowest waters were exposed on a tidal basis, that could explain why they’d make 2 lines: one at low tide, and one at night! Even in places without tides, like the Biosphere 2 ocean, I’d noticed evidence of 12-hour patterns of activity in the clams. It’s so nice (and rare!) when one of my hypotheses is confirmed!
A nice schematic Niels put together showing all the environmental factors that influence the shells of scallops and giant clams, and how much different elements vary as a function of sunlight, tides and other more irregular events like storms. Mn stands for manganese, Ba for barium, Sr for strontium and Mg for magnesium.
Both the giant clams and scallops recorded large irregular swings in all of the studied elements, likely due to non-periodic disturbances. In the case of the scallops, these included storms and the floods of sediment from rivers. For the giant clams, these probably included algae blooms that affect the Red Sea, as well as potentially dust storms that also come every 1-2 years. Both giant clams and scallops have a lot of potential to measure paleo-weather, which is something that other researchers have observed as well!
Niels, where do you see this work heading next?
The recent work looking at very short-term changes in shells is very promising, I think. I agree that there might be a possibility to detect weather patterns in these shells, but that would require some more work into understanding how these animals respond to changes in their environment on an hourly scale and what that response does to their shell composition.
In the meantime, I was intrigued to find that we were not the only people looking for daily cycles in the chemistry of giant clam shells. I had the pleasure of reviewing this paper by Iris Arndt and her colleagues from the university of Frankfurt (Germany). Iris took a similar approach to detecting these daily cycles by using spectral analysis, but she a smart tool called a “wavelet analysis” to visualize the presence of daily rhythms in the shell, which I think was more successful than my approach. She even wrote a small piece of software which can be used to (almost) automatically detect the days and “date” the clam shell based on them. This is quite a step forward, and if I were to do a project like this again, I would certainly try our Iris’ method.
Interesting, too, is that the fossil giant clams studied by Iris showed the daily cycles in magnesium concentration instead of strontium and barium. This shows that the incorporation of trace metals into clam shells is still not fully understood. So one of the things to do, in my opinion, would be to try to see if we can use shells grown under controlled conditions to link the shell composition to short-term changes in the environment. This would require a complex experimental setup in which we simulate an artificial day and night rhythm or an artificial “storm”, but I think it can be done using the culture experiments we do at the NIOZ.
This study represented a unique opportunity to collaborate with my colleague Niels on a topic that interested both of us, which we wouldn’t have been able to pursue on our own. I enjoyed collaborating with him on this work and we have some ideas for further studies down the road, so stay tuned for the next co-clam-boration!
Two giant clams off the coast of Israel. Left: Tridacna maxima, the small giant clam. Right: Tridacna squamosina
Another year, another new paper is out, another clamsplainer to write! The fourth chapter from my PhD thesis was just published in Proceedings of the Royal Society B. This study represents five years of work, so it feels great to finally have it leave the nest. In this study, we investigated the comparative growth of fossil and modern giant clams in the Gulf of Aqaba, Northern Red Sea. Back in 2016 during my PhD, I knew I wanted to study giant clams because they are unique “hypercalcifying” bivalves that grow to huge sizes with the help of symbiotic algae living in their bodies. The clams are essentially solar-powered, and use the same type of algae that reef-building corals depend on! Unlike corals, which are the subject of a ton of research related to how they are threatened by climate change, habitat destruction and pollution, comparatively little is known of how giant clams will fare in the face of these environmental changes. Are they more resistant than corals, or more vulnerable?
T. squamosa on the reef off the coast of Eilat.
I had strong reason to suspect that the clams are struggling in the face of human changes to the environment. They can bleach like corals do when exposed to warm water, and have been observed to be harmed when waters are less clear since they are so reliant on bright sunlight to make their food. But I need a way to prove whether that was the case for the Red Sea. I needed to travel to a place where fossil and modern giant clams could be found side by side, so their growth could be compared using sclerochronology. We would count growth lines in their shells to figure out how fast the grandaddy clams grew before humans were around, and compare that ancient baseline to the growth rate of the clams in the present. Giant clams make growth lines every day in their shells, giving us the page numbers in their diary so we can figure out exactly how fast they grew! We can also measure the chemistry of their shells to figure out the temperatures they experienced from the oxygen isotopes, and even what they were eating from the nitrogen isotopes.
A map of the Gulf of Aqaba, where our study took place. My talented marine scientist partner Dana Shultz made this map!
It just so happened that UCSC’s Dr. Adina Paytan was leading an NSF-funded expedition to the Red Sea in summer 2016, which represented a perfect place to do this work. There are many age dated fossil reefs uplifted onto land around the Gulf of Aqaba on the coasts of Israel and Jordan, and there are three species of giant clam living in the Red Sea today: Tridacna maxima (the small giant clam), Tridacna squamosa (the fluted giant clam), and Tridacna squamosina. Tridacna squamosina is particularly special because it is only found in the Red Sea, making it an endemic species. It is extremely rare in the modern day, with likely only dozens of individuals left, making it potentially endangered.
So I set off with Adina and two other students to live for two months in in the blazing hot desert resort town of Eilat, Israel, working at the famous Interuniversity Institute. Getting a permit from the Israeli National Parks Authority, I collected dozens of empty giant clam shells (no clams were harmed in the course of this study!) from the surf zone and from ancient reefs ranging from a few thousand years to almost 180,000 years old. I also spent a week over the border in Aqaba, Jordan where I worked with Dr. Tariq Al-Najjar, my coauthor and director of the University of Jordan Marine Science Station. Tariq is a specialist in algal productivity in the Gulf and was an excellent resource in trying to understand how water quality has changed in the area through time. He pointed out that over the years, the Gulf of Aqaba has had an increased nutrient supply far above what it received in historic times. For nearly 20 years the Gulf was subjected to excess nutrients from Israeli fish farms, which caused tremendous damage to the reefs of the area with their releases of fish waste. The farms were finally forced to close after a long lobbying campaign from Israeli and Jordanian scientists and environmentalists. But even after the farm pollution stopped, there was still increased nutrient supply from runoff and even carried into the Red Sea by dust in the form of nitrate aerosols. These aerosols are produced when our cars and power plants release nitrogen oxide gases, which react in the atmosphere to form nitrate and fall during periodic dust storms that hit the Red Sea a few times per year.
All of these sources of nitrogen are fertilizer for plankton, causing what scientists call “eutrophication.” When plankton blooms, it literally causes the water to be less transparent, which could reduce the clams’ ability to gather light and lead to them growing more slowly. At least that was my hypothesis, but I had to prove if it was true or not. So during that summer and over the next few months, I cut dozens of clam shells into cross-sections, used a special blue dye called Mutvei solution to make their growth lines visible, and took pictures of those lines with a microscope. Then I counted those lines to figure out how many micrometers the clam was growing per day.
A picture showing some of the fine daily lines visible in a blue-stained shell
Here I hit my first challenge: it turned out some clams were putting down one line per day as expected, but some were putting down twice as many! But the way I was using to discern between the two was to measure the oxygen isotopes of the clams’ shells, which forms a record of temperature. By counting how many lines appear between each annual peak of temperature, we confirmed some were daily and some were twice daily. But the oxygen isotope approach is expensive would not be scalable across the dozens of shells I had collected.
Annual growth lines in the shell of a Tridacna maxima clam
Then I remembered that I could measure the lines in the inner part of the clams’ shells, which are formed annually. By counting those lines and then measuring the length of the clam, I could get an approximate measure of how much it grew per year on average. This would allow me to calibrate my band-counting and discern which records represented daily lines and which were twice daily! What a relief.
So I went through all of the shells, counting lines and gathering growth info for as many shells as I could muster. It meant many hours staring at a microscope, taking pictures and stitching the pictures together, then squinting at my computer screen highlighting and measuring the distance between each growth line. I had hoped to come up with an automated way to measure it, but the lines turned out to be faint and difficult for the computer to distinguish in a numerical way. So instead I just powered through manually. When I had the raw growth data, I then transformed them to a pair of growth constants commonly used in the fisheries literature to compare growth across populations. When I put the data together across all 55 shells, I was surprised to discover that my hypothesis was totally incorrect. The clams were growing faster!
Growth constants for all three species, comparing fossils and modern shells. We used two growth constants (phi prime and k) to help control for the fact that our clams were at different sizes from each other. You wouldn’t compare the growth rate of babies and teenagers and try to make any broader assumptions of their relative nutrition without some additional attempts to normalize the data!
Science rarely goes according to plan. The natural world is too complex for us to follow our hunches in understanding it, which is the main reason the scientific method came about! But at a human level, it can still be shocking to realize your data says you were totally wrong. So after a few days sitting and ruminating on these results and what they meant, I remembered what Tariq and other scientists had said about nitrates. The clams are essentially part plant. They use photosynthetic symbionts to gain most of their energy. And much as nitrate pollution can fertilize plankton algae growth, maybe it could do the same for the algae within the clams! It had previously been observed that captive giant clams grew faster when “fertilized” with nitrates or ammonia. But such an effect had never before been observed in the wild. We needed a way to demonstrate whether the Red Sea clams were experiencing this.
Fortunately, the clams also keep a chemical record of what they’re eating within the organic content of their shells. Shells are a biological mineral, made of crystals of a mineral called calcium carbonate. But within and between those crystals, there’s a network of proteins the clam uses like a scaffold to build its shell. Those proteins are made of amino acids that contain nitrogen. That nitrogen comes in different “flavors” called isotopes that can tell us a lot about what an animal eats and how it lives. The ratio of heavier nitrogen-13 and lighter nitrogen-12 increases as you go up the food chain. Plants and other autotrophs have the lowest nitrogen isotope values because they use nitrate directly from the environment. For every level of the animal food chain, nitrogen isotope values increase. Herbivores are lower than carnivores. If you live on only steak, your nitrogen isotope values will be higher than a vegetarian. The same will be true for clams. If the clams were taking in more nitrogen from sources like sewage or fish farms, they would show higher nitrogen isotope values in the modern day.
We found that nitrogen isotope values were lower in the modern day!
Taking bits of powder from several dozen of the shells, we worked with technician Colin Carney at the UCSC Stable Isotope Lab to measure the nitrogen isotopes of the shell material. A machine called an Elemental Analyzer literally burns the shell material to release it in a gas form. A carbon dioxide scrubber absorbs the CO2 and carbon monoxide gas, leaving only the nitrogen gas behind. That gas is measured by a mass spectrometer, which essentially separates out the different isotopes of nitrogen and tells us what fraction is nitrogen-13 or nitrogen-12. Plotting all the shell data together, I discovered that my hypothesis was…totally wrong. The nitrogen isotope values of the modern shells were lower than the fossils. The clams had moved down in the food chain, but how?
A dust storm rolling over the Israeli Negev Desert. Source
After ruling out a bunch of other explanations including the preservation of the shells, we propose that this represents a human-related change in the environment that the clams are recording. As I mentioned before, the Red Sea these days is regularly hit by huge dust storms which are conduits for nitrate aerosols. Our cars emit nitrogen-containing gases which, through a complex web of chemical reactions in the atmosphere, end up in the form of nitrate particles called aerosols. These nitrate aerosols bind to the dust delivered by strong windstorms called haboobs, which carry the dust long distances, with some of it being deposited several times of year. This deposition of nitrate has been found to form up to a third of the nitrate supply hitting the Red Sea, and was a source of nitrogen that wasn’t available to the clams in historic times. These nitrate aerosols are extremely low in nitrogen isotope value, and would be very likely to explain the lower nitrogen isotope value in our clams! If the clams ate the nitrate, their symbionts would grow more quickly, providing them with more sugars through photosynthesis and accelerating clam growth!
Some additional factors probably also have influenced giant clam growth in the region. The Red Sea historically had regular monsoon rains which likely slowed growth in fossil clams, as storms are known to do for giant clams in other areas, but such monsoons no longer reach the area. The Red Sea also had much higher seasonal range of temperatures in the past, with colder winters and warmer summers. Both factors (storms and extremes of temperature) have been previously shown to depress giant clam growth, and so the modern Red Sea may be a goldilocks environment for the clams: a consistent year-round not too cold or hot temperature.
However, as we discuss in the paper, these factors don’t necessarily mean that the clams are healthier. Faster giant clam growth has been found in other research to lead to more disordered microstructure in their shells, which would have uncertain effects on their survival against predators like fish, lobsters and humans. Additionally, a higher nutrient supply to reefs often causes the corals that build the reefs to lose out to competition from algae that block sunlight and crowd out coral colonies. If the reefs are harmed by the climatic changes that have potentially helped the clams, the clams will still lose. Giant clams are adapted to live only where coral reefs are found, and nowhere else. So more research will be needed in the Red Sea to determine if the health of clams and corals is hurt or harmed by these nitrate aerosols, and what that will mean for their long-term survival in the area.
Over the course of working on this research, the giant clams taught me a lot about life. They taught me that my hypotheses are often wrong, but that’s alright, because my hypotheses can still be wrong in a way that is interesting. I learned to go with the flow and trust the clams to tell me their story through the diaries they keep in their shells. I have followed their lessons wherever they led. Now I am doing follow-up work growing giant clams in a giant coral reef tank at Biosphere 2 in Arizona, to directly observe how the clams’ symbiosis develops and create new forms of chemical records of their symbiosis! The work described in my paper here has led to a suite of different ongoing projects. The clams have many more lessons to teach me. Thank you clams!
I have always been fascinated by scientific discoveries that are hanging right in front of our noses. Cryptic species are one such surprise. Sometimes, researchers using genetic sequencing are surprised to discover that a group of animals that all look the same from the outside are actually reproductively isolated from each other; separate twigs on the tree of life. This surprise has happened over and over in the history of natural science.
It turns out such puzzles are frequent among the giant clams. These unusual bivalves are specialists in coral reef environments, growing to large size with the help of symbiotic algae that create sugars through photosynthesis. Within the genus Tridacna there are ~10 accepted species which vary in size, shape, color and mode of life.
Tridacna squamosina (right) sitting next to the small giant clam T. maxima (left) on the Israeli Red Sea coast
I specialize in the three species known (so far) from the Red Sea, including the small giant clam Tridacna maxima and the fluted giant clam T. squamosa, which are both found worldwide, all the way from the Red Sea to down past the equator along the Great Barrier Reef. The third local species, T. squamosina is more unusual, so far being only known from the Red Sea (an endemic species). T. squamosina is an example of a cryptic species, having previously been assumed to be a local variant of T. squamosa. It looks pretty similar, with long scutes (flap-like appendages) protruding from its shell, thought to help stabilize it on the flat bottom of loose coral rubble. But unlike T. squamosa, T. squamosina lives exclusively at the top of the reef in the shallowest waters closest to the sun. It has a very angular, zig-zag pattern in its plications (the wavy shapes at the edge of the shell) and a characteristic pair of green stripes where the soft tissue meets the edges of the shell. The soft tissue is covered with warty protuberances.
Pictures of details of T. squamosina from Richter et al. 2008
It was only first described in detail in the early 2000s, when an international team of researchers figured out using genetic sequencing that it was a distinct species and named it T. costata. They noted that in their surveys all around the shores of the Red Sea, they only found 13 live specimens, making it an extremely rare and possibly endangered species. Fossil specimens on local reefs appeared to be much more common, suggesting it had a much larger population in the past. Then in 2011, another team at the Natural History Museum in Vienna discovered a shell of one had been forgotten in its collection for over 100 years. Rudolf Sturany, the researcher on the 1895 research cruise who had originally collected the clam, had called it T. squamosina.
The T. squamosina shell in the collection of the Museum of Natural History in Vienna (from Huber and Eschner, 2011)
In taxonomy (the science of naming and classifying organisms), the first team to name the species wins, so the name T. costata was synonymized (retired) in favor of the earlier name T. squamosina, which became the name of record. It must be annoying to spend so much time working to name a species and then discover you had been scooped over a century before! But such is science.
A mystery clam thought to be T. squamosina, later identified as T. elongatissima found off of Mozambique by iNaturalist user bewambay
The strange part was that there were some murmurs over the last few years that T. squamosina was not only found in the Red Sea, but also had been seen along the coast of Africa as far south as Kenya, Mozambique and Madagascar. Divers and snorkelers had taken pictures of a giant clam that did indeed look strangely like T. squamosina, with a zigzag shell opening and green stripes at the edge of its tissue. But some aspects of these individuals seemed off. In the Red Sea, T. squamosina lives freely, not embedded in the coral as these pictures showed, and the geometry of the angles of the shell seemed a bit different. It also would be difficult for T. squamosina to be connected in population from the Red Sea all the way South to Mozambique, as there are natural barriers which would prevent its planktonic larvae from riding currents to intermix between the two regions. When populations are separated by a barrier, the flow of genes between them is cut off and evolution begins to separate the populations from each other until they are separate species, a process called allopatric speciation.
A large specimen of T. elongatissima observed by iNaturalist user dawngoebbels off of Kenya
I figured that someday, researchers would collect tissue samples from these mystery clams to settle whether they were actually T. squamosina or something else. And this year, a team did just that, traveling along the coast of Mozambique, Madagascar, Kenya and other places, collecting samples of tissue to compare how all the different clams they saw were related in a family tree. They genetically sequenced these “clamples” and in the process, found that the mystery clams were a new cryptic species, which they called T. elongatissima!
Shells of T. elongatissima from the Fauvelot et al. 2020 paper
For comparison, a shell of T. squamosina collected off of Sinai, Egypt. You can see why they’re easy to mix up!
T. elongatissima closely resembles T. squamosina, and they are sister species on the bivalve family tree. It’s hard to tell them apart without training. Even a professional would probably mix some of them up if they were all placed sitting next to each other. The major differences appear to relate to shell shape, with T. elongatissima having a less symmetrical shell than T. squamosina, and a bigger opening at the rear hinge for a foot to poke through. The symmetrical shell and closing of the foot opening may represent changes that T. squamosina took on to adapt to be able to sit freely on the bottom, rather than embedding in the coral like T. elongatissima seems to prefer. If you’ve read this far, you may be thinking “Who cares? A clam’s a clam and these look practically the same. Aren’t you just splitting clams at this point?” At the end of the day, a species is a man-made concept; an organizing tool for use by us humans. Species are the characters in our reconstruction of the history of the world. What can we learn about the world by having identified this species T. elongatissima?
A giant clam family tree! Notice T. squamosina and T. elongatissima right next to each other.
The researchers behind the new paper discuss that based on statistical analyses of the genetic differences between the species, the most recent common ancestor for T. elongatissima and T. squamosina probably lived more than 1.4 million years ago! Some researchers have previously suggested that T. squamosina probably began its development as a separate species due to geographic isolation by low sea level, caused by repeated glaciations. With so much water trapped as ice on land during this period, the narrow Strait of Bab al Mandab, currently the gateway to the Red Sea, became a land barrier as sea level fell (kind of like opposite of the Bering Sea land bridge that formed allowing humans to migrate to the Americas). Ancestral clams trapped on the Northern end of this barrier were proposed to have evolved to become the rare T. squamosina.
This has occurred with a variety of species that became Red Sea endemics (meaning they are unique species that evolved in the Red Sea and are found nowhere else), including a unique crown of thorns starfish. The issue is that during this time of low sea level, the Red Sea went through periods where it was a rather unfriendly place for clams to live. All sorts of creatures went extinct in the period when the sea was repeatedly cut off, because the water became extremely salty, along with other unfriendly changes. So it’s unlikely T. squamosina would be present for us to see today if it only lived in the Red Sea throughout the entire length of time.
A map from Fauvelot et al. 2020 showing the distributions of different giant clams the researchers identified along the coasts of Africa and the Red Sea. Notice the bright red dots representing T. squamosina, only found in the Red Sea, while green dots represent T. elongatissima. Notice how the currents (arrows) seem to meet and then go offshore from Kenya. More on that in the next paragraph.
The researchers of this new paper propose that T. squamosina was more likely to have initially branched off due to the barrier of the Horn of Africa. The seas off of Kenya and Somalia harbor a meeting of southward and northward currents which then group and head offshore, away from the reefs that giant clam larvae are trying to get to. So any tiny floating planktonic clam larvae would experience a strong “headwind” preventing them from crossing that point. It would also mean that during times that the Red Sea was not a happy place to be a clam, T. squamosina may have found refuge on the coasts of places like Eritrea, Oman and possibly even as far as Pakistan. During times when sea levels rose and Red Sea conditions became friendlier, it recolonized the area.
As far as we know, the Red Sea is the only place T. squamosina is now found, but it may well be present elsewhere like Yemen or Oman. If T. squamosina was found in other regions, it would be tremendously important for its conservation. Right now, the species is thought to be extremely rare, with a very small native range. If it inhabited a broader area, that would mean more reservoirs of genetic diversity. This would reduce the odds that it will go extinct as reefs are put under stress from climate change, pollution and overharvesting. To survive as a species, it helps to not put all your eggs in one basket. If you’re only found in one small place, it increases the chances that a disaster (like climate change) will wipe you out.
The only way we will know for sure is to visit reefs in understudied places like Yemen, Oman, Pakistan, Eritrea and Somalia, to understand the richness of the giant clams present. These areas are understudied for various reasons: lack of research funding for non-Western researchers, lack of interest from the scientific community too focused on familiar places, and geopolitical situations that make it difficult to conduct research. But I hope someday to collaborate with people in these countries to better understand the giant clams present in such understudied regions of the globe. It is virtually certain that there are more species of giant clams, both alive and as fossils, waiting to be discovered.
Is eating these a gamble? Science can help improve our odds!
I am often asked if I eat clams. The answer is yes: while I love to observe live clams and appreciate their abilities, I will eat a good clam chowder or plate of grilled scallops if presented with the chance. While I’m generally not a fan of super fishy-tasting foods, I eat bivalves with a clear conscience because farmed mollusks represent a super sustainable way to get protein! However, as many of us have learned the hard way, shellfish can sometimes produce unwanted results later after the meal, if the animals are contaminated with food poison. Eating such “bad” clams can produce a spectrum of food poisoning symptoms ranging from vomiting and diarrhea to memory loss to even paralysis and death.
Humans have known the hazards of eating shellfish for a very long time. It has been suggested that the ban on shellfish present in kosher and halal dietary rules arose as a preventative measure to protect from food poisoning (though eating fish, land animals and even vegetables can poison people in numerous ways as well). Studies of oysters have determined that ancient peoples of modern day Georgia from 5000 years before present selected their season of harvest based partially on knowledge of the seasons when such poisoning was most prevalent in their area.
How and why does this happen, and what can we do to prevent it? It’s a billion-dollar question, because when flare-ups of shellfish food poisoning happen, they are hugely costly to fishermen and the food industry, costing millions of dollars a year in lost business when fisheries are forced to shut down and products are recalled. Such events are increasing in frequency and severity. Which makes it all the more strange that these shellfish poisoning events are not the fault of the bivalves per se, but rather what they’re eating.
Note: people generally get annoyed when you start to point out the body parts of the oyster they’re about to swallow whole. Source
Almost all bivalves are filter-feeders, using their gills to gather small passing food particles, which they then either ingest or discard based on the quality of the food item. Clams are cows crossed with Brita filters, and for many species of clams which we eat, the reason they do all this filtration is to find phytoplankton food. Phytoplankton are microscopic algae suspended by ocean currents that make their living from photosynthesis. They are a hugely plentiful and high-quality food item, making up a huge amount of the biomass available in the ocean. Like plant-life on land, phytoplankton are highly seasonal in their appearance, rising and falling in abundance in periodic “bloom” events.
Aerial view of a red tide off the Texas coast. Source: NOAA
But as Spongebob Squarepants taught us, plankton are not always peaceful. Many types of algae produce toxic compounds which may be integrated into the body parts of bivalves that eat them. Scientists call the blooms of algae which produce toxins “Harmful Algal Blooms” (HABs), and such events are growing in frequency and cause huge harm to marine life and sicken thousands of people per year. There are many algae species which cause HABs all around the world, sometimes visible as “red tides,” but not always. When HABs occur, they can lead to mass deaths of higher animals in the food chain that feed on clams such as marine mammals and seabirds. In fact, HABs are at their most dangerous to humans when they catch us by surprise.
Who me? I’d never!
Microscope view of the toxic dinoflagellate Karenia. Source: NOAA
When humans eat bivalves which have been dosed with such marine toxins, many types of poisoning can occur. Brevetoxin is produced by a type of dinoflagellate phytoplankton Karenia as well as other species, and when humans are exposed, we can suffer from Neurotoxic Shellfish Poisoning, which causes vomiting, diarrhea and even neurological effects like slurred speech. Saxitoxin is produced by a variety of plankton species including dinoflagellates and freshwater cyanobacteria. When ingested in clams (such as the butter clam Saxidomus which gave it its name), fish or other animals, it can cause Paralytic Shellfish Poisoning, a sometimes fatal syndrome which shuts down nerve signaling, leading to temporary paralysis.
So we know it’s bad for humans to ingest these toxins. What is it doing to the clams? Oddly enough, some types of toxins like saxitoxin are not that harmful to the clams or other plankton eating animals, allowing them to accumulate huge amounts in their bodies with little ill effect. Its presence does not seem to influence their feeding behavior much, or their growth after exposure. Its status as a neurotoxin in mammals might be a total chemical and evolutionary coincidence, as researchers suggest that it may actually serve as a signal in some part of the algae’s mating cycle. This also may be the case for brevetoxin, which appears to be produced when Karenia is under environmental stress. But there is not much agreement in the HAB and aquaculture research fields, because there are many types of algae, which may produce their toxins for many reasons, and it is very hard for us to zoom in to the scale of the microbe and out to the scale of the ecosystem at the same time, to find any kind of universal evolutionary role of these toxins. Some researchers insist that some bivalves are influenced negatively by brevetoxin, but only at the juvenile stage during major bloom events. The effects of the toxin may only influence certain species, or only become significant if the toxin reaches the digestive tract of the bivalve. Overall, research into impact of HABs on clams is still a topic of active research, and the idea that the microbes produce these toxins to defend against bivalve predators is definitely not a slam-dunk, easily proven hypothesis. While some clams are negatively affected by the toxins, it is not consistently observed across species in a open-and-shut way, and it can be a subtle effect to observe and quantify scientifically.
Karenia to mammals: Oops!
The more I read about this stuff, the more shocked I am at the incredible complexity of marine algae and their toxins. I only started reading about them trying how to to understand how they influence bivalves. I was hoping to find some evidence of their effects on bivalve growth that I could apply back in time in fossil shells to understand the historical occurrence of HAB events. It’s important to understand HABs because they hurt people, cost our society a lot of money and if we understand how to avoid them, we can help minimize such impacts in the future as HABs continue to become more common.
Hi colleagues! Several weeks ago, I was supposed to present a talk at GSA’s annual meeting in Phoenix at the session “Advances in Ocean and Climate Reconstructions from Environmental Proxies”, but I shattered my wrist in a scooter accident the night before and was in emergency surgery during my talk time. So instead I’ve uploaded my talk with voice-over to Youtube! The whole video is about 15 minutes. You can view it above. Feel free to comment on this post or email me if you have questions!
This work is currently in the last stretch of drafting before submission, but I also discuss some ongoing research and am always open if you have your own ideas for collaborations!
Correction: we are working with geophysicists to understand the shell transport mechanism.
These are the references mentioned at the end:
Crnčević, Marija, Melita Peharda, Daria Ezgeta-Balić, and Marijana Pećarević. “Reproductive cycle of Glycymeris nummaria (Linnaeus, 1758)(Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia.” Scientia Marina 77, no. 2 (2013): 293.
Grossman, Ethan L., and Teh-Lung Ku. 1986. “Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects.” Chemical Geology: Isotope Geoscience Section 59: 59–74.
Gutierrez-Mas, J. M. 2011. “Glycymeris Shell Accumulations as Indicators of Recent Sea-Level Changes and High-Energy Events in Cadiz Bay (SW Spain).” Estuarine, Coastal and Shelf Science 92 (4): 546–54.
Jones, Douglas S., and Irvy R. Quitmyer. 1996. “Marking Time with Bivalve Shells: Oxygen Isotopes and Season of Annual Increment Formation.” PALAIOS 11 (4): 340–46.
Mienis, Henk, R. Zaslow, and D.E. Mayer. 2006. “Glycymeris in the Levant Sea. 1. Finds of Recent Glycymeris insubrica in the South East Corner of the Mediterranean.” Triton 13 (March): 5–9.
Najdek, Mirjana, Daria Ezgeta-Balić, Maria Blažina, Marija Crnčević, and Melita Peharda. 2016. “Potential Food Sources of Glycymeris nummaria (Mollusca: Bivalvia) during the Annual Cycle Indicated by Fatty Acid Analysis.” Scientia Marina 80 (1): 123–29.
Peharda, Melita, Marija Crnčević, Ivana Bušelić, Chris A. Richardson, and Daria Ezgeta-Balić. 2012. “Growth and Longevity of Glycymeris nummaria (Linnaeus, 1758) from the Eastern Adriatic, Croatia.” Journal of Shellfish Research 31 (4): 947–51.
Reinhardt, Eduard G, Beverly N Goodman, Joe I Boyce, Gloria Lopez, Peter van Hengstum, W Jack Rink, Yossi Mart, and Avner Raban. 2006. “The Tsunami of 13 December AD 115 and the Destruction of Herod the Great’s Harbor at Caesarea Maritima, Israel.” Geology 34 (12): 1061–64.
Royer, Clémence, Julien Thébault, Laurent Chauvaud, and Frédéric Olivier. 2013. “Structural Analysis and Paleoenvironmental Potential of Dog Cockle Shells (Glycymeris glycymeris) in Brittany, Northwest France.” Palaeogeography, Palaeoclimatology, Palaeoecology 373: 123–32.
Sivan, D., M. Potasman, A. Almogi-Labin, D. E. Bar-Yosef Mayer, E. Spanier, and E. Boaretto. 2006. “The Glycymeris Query along the Coast and Shallow Shelf of Israel, Southeast Mediterranean.” Palaeogeography, Palaeoclimatology, Palaeoecology 233 (1): 134–48.
Scallops spooked by divers’ lights and fleeing en masse to filter somewhere else
The ocean is a place of constant dynamic movement. Fish use their fins to push water away from themselves, and because every action has an equal and opposite reaction, they therefore move forward. Some cephalopods use jet propulsion, constricting their mantle cavity to push water out through siphons, allowing them to jet forward like a deflating balloon. And other life forms sail the seas on constantly moving currents , indirectly harnessing the power of the sun and earth.
Bivalves are a fairly sedentary bunch by comparison. While most bivalves have a planktonic larval form, when they settle they are constrained to a fairly small area within which they can burrow or scramble around with their muscular feet.
But some bivalves have evolved to move at a quicker rate. The most famous swimming bivalves are the scallops, which have evolved to use jet propulsion, similar to their very distantly related cephalopod relatives. But unlike the cephalopods, scallops evolved to use their hinged shells to aid this process!
Notice the expelled water disturbing the sediment below the scallop as it “claps” its way forward!
Many filter-feeding bivalves use their shell valves as a biological bellows to pull in water for the purposes of sucking in food, or even to aid in digging, but scallops have developed another use for this activity, to enable propulsion. Scallops draw in water by opening their valves to create a vacuum which draws in water to their sealed mantle cavity. They then rapidly close their valves using their strong adductor muscles to pull them together, which pushes the water back through vents in the rear hinge area, propelling the scallop forward.
Don’t panic if a scallop swims toward you. They can see, but not super well. This one is just confused.
Using this strategy, scallops can evade predators and distribute themselves to new feeding sites. It’s a surprisingly effective swimming technique, with the queen scallop able to move 37 cm/second, or over five body lengths per second! Michael Phelps would have to swim at nearly 35 km/h to match that relative speed (his actual highest speed is around 1/3 of that). I’m sure sustaining that speed would be tiring for Mr. Phelps, though, and it’s the same for scallops, only using their swimming for short-distance swims.
A recent paper from a team in Switzerland just came out describing an effort to engineer a robot which imitates the scallop’s elegant and simple swimming method. The resulting totally adorable “RoboScallop” closely imitates the design of a scallop, using a pair of hinged valves with rear openings to allow the movement of water backward. The internal cavity is sealed by a rubber membrane draped across the front so that all water is forced through these rear vents when the Roboscallop snaps shut.
Diagram from the Roboscallop paper (from Robertson et al. 2019)
As seen in the diagram above, the rhythm and relative velocity of opening vs closing is important to make sure the RoboScallop actually moves forward. If the scallop opened as quickly as it closed, it would just rock back in forth. It instead opens slowly so that it does not draw itself backward at the same rate that it can push itself forward. The researchers had to do quite a bit of calibration to get these rates right (equating to about 1.4 “claps” per second), but once they did, they ended up with a RoboScallop that can generate about the same force of forward movement (1 Newton) as a real scallop (1.15 Newtons), and similar rates of speed.
This paper really fascinated me because it is merely the latest in a long line of successful engineering projects imitating the ingenuity of evolution. Other marine robots have been made which emulate the locomotion of fish, manta rays, sea snakes and other forms of swimming. And now we have a clam! Let me know when I can buy one to play with in my pool.